已知函數(shù)f(x)=cos(2x
(1)求函數(shù)f(x)的最小正周期及最大值;
(2)設(shè)A,B,C為△ABC的三個(gè)內(nèi)角,若AB=1,sinB=,,且C為銳角,求AC的長(zhǎng).
【答案】分析:(1)利用兩角和公式和二倍角公式對(duì)函數(shù)解析式化簡(jiǎn)整理,利用三角函數(shù)的周期公式氣的函數(shù)的最小正周期,進(jìn)而利用正弦函數(shù)的性質(zhì)求得函數(shù)的最大值.
(2)利用求得sin的值,進(jìn)而求得的值,則C的值可求,進(jìn)而求得sinC的值,最后利用正弦定理求得AC.
解答:解:f(x)=cos(2x=
(1)
當(dāng),即時(shí),
所以函數(shù)f(x)的最大值為,最小正周期為π.
(2),∴
因?yàn)镃為銳角,即,∴,∴,所以sinC=
在△ABC中,由正弦定理,,得
點(diǎn)評(píng):本題主要考查了兩角和公式,二倍角公式的化簡(jiǎn)求值,三角函數(shù)的基本性質(zhì),正弦定理的應(yīng)用.綜合考查了基礎(chǔ)知識(shí)的靈活的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
|x+
1
x
|,x≠0
0     x=0
,則關(guān)于x的方程f2(x)+bf(x)+c=0有5個(gè)不同實(shí)數(shù)解的充要條件是( 。
A、b<-2且c>0
B、b>-2且c<0
C、b<-2且c=0
D、b≥-2且c=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sinxcosx-cos2x-
1
2
,x∈R.
(1)求函數(shù)f(x)的最小值和最小正周期;
(2)已知△ABC內(nèi)角A、B、C的對(duì)邊分別為a、b、c,滿足sinB-2sinA=0且c=3,f(C)=0,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx-
1
4
x+
3
4x
-1,g(x)=x2-2bx+4,若對(duì)任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),則實(shí)數(shù)b的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的圖象如圖所示,則函數(shù)的值域?yàn)椋ā 。?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足f(0)≥2,f(1)≥2,方程f(x)=0在區(qū)間(0,1)上有兩個(gè)實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍為
(4,+∞)
(4,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案