解:g(x)為R上周期為1的函數,則g(x)=g(x+1)函數f(x)=x+g(x)在區(qū)間[0,1]【正好是一個周期區(qū)間長度】的值域是[-2,5]
令x+1=t,當x∈[0,1]時,t=x+1∈[1,2]
此時,f(t)=t+g(t)=(x+1)+g(x+1)=(x+1)+g(x)
=[x+g(x)]+1
所以,在t∈[1,2]時,f(t)∈[-1,6]…(1)
同理,令x+2=t,在當x∈[0,1]時,t=x+2∈[2,3]
此時,f(t)=t+g(t)=(x+2)+g(x+2)=(x+2)+g(x)
=[x+g(x)]+2
所以,當t∈[2,3]時,f(t)∈[0,7]…(2)
由已知條件及(1)(2)得到,f(x)在區(qū)間[0,3]上的值域為[-2,7]
故答案為:[-2,7].