【題目】已知,函數(shù).

(1)求證:曲線在點(diǎn)處的切線過定點(diǎn);

(2)若在區(qū)間上的極大值,但不是最大值,求實(shí)數(shù)的取值范圍;

(3)求證:對任意給定的正數(shù),總存在,使得上為單調(diào)函數(shù).

【答案】(1)證明見解析;(2);(3)證明見解析.

【解析】

試題分析:(1)根據(jù)導(dǎo)數(shù)的幾何意義可求得直線的斜率,從而得切線方程為,進(jìn)而得切線過定點(diǎn);(2)令,在區(qū)間上的極大值可得,可得結(jié)果;(3)令,得遞增;令,得遞減,若為單調(diào)函數(shù),則,即.

試題解析:(1),

曲線在點(diǎn)處的切線方程為,

,令,則,

故曲線在點(diǎn)處的切線過定點(diǎn).

(2)解:.

.

在區(qū)間上的極大值,.

,得遞增;令,得遞減.

不是在區(qū)間上的最大值,

在區(qū)間上的最大值為.

,又.

(3)證明:.

.

,得遞增;令,得遞減.

.

為單調(diào)函數(shù),則,即.

故對任意給定的正數(shù),總存在(其中),使得上為單調(diào)函數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn滿足

1)求數(shù)列{an}的通項(xiàng)公式;

2)求證:數(shù)列{an}中的任意三項(xiàng)不可能成等差數(shù)列;

3)設(shè),Tn{bn}的前n項(xiàng)和,求證

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一個(gè)八面體各棱長均為1,四邊形ABCD為正方形,則下列命題中不正確的是

A. 不平行的兩條棱所在直線所成的角為 B. 四邊形AECF為正方形

C. 點(diǎn)A到平面BCE的距離為 D. 該八面體的頂點(diǎn)在同一個(gè)球面上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線, 極坐標(biāo)方程分別為, . 

(Ⅰ)交點(diǎn)的極坐標(biāo);

(Ⅱ)直線的參數(shù)方程為為參數(shù)),軸的交點(diǎn)為,且與交于, 兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(1)若在區(qū)間上具有相同的單調(diào)性,求實(shí)數(shù)的取值范圍;

(2)若,且函數(shù)的最小值為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列滿足

1)求;

2)求的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某房屋開發(fā)公司根據(jù)市場調(diào)查,計(jì)劃在2017年開發(fā)的樓盤中設(shè)計(jì)“特大套”、“大套”、“經(jīng)濟(jì)適

用房”三類商品房,每類房型中均有舒適和標(biāo)準(zhǔn)兩種型號(hào).某年產(chǎn)量如下表:

房型

特大套

大套

經(jīng)濟(jì)適用房

舒適

100

150

標(biāo)準(zhǔn)

300

600

若按分層抽樣的方法在這一年生產(chǎn)的套房中抽取50套進(jìn)行檢測,則必須抽取“特大套”套房10套, “大套”15套.

(1)求,的值;

(2)在年終促銷活動(dòng)中,獎(jiǎng)給了某優(yōu)秀銷售公司2套舒適型和3套標(biāo)準(zhǔn)型“經(jīng)濟(jì)適用型”套房,該銷售公司又從中隨機(jī)抽取了2套作為獎(jiǎng)品回饋消費(fèi)者.求至少有一套是舒適型套房的概率;

(3)今從“大套”類套房中抽取6套,進(jìn)行各項(xiàng)指標(biāo)綜合評價(jià),并打分如下:

現(xiàn)從上面6個(gè)分值中隨機(jī)的一個(gè)一個(gè)地不放回抽取,規(guī)定抽到數(shù)9.6或9.7,抽取工作即停止.記在抽取到數(shù)9.6或9.7所進(jìn)行抽取的次數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面為正方形, 平面, , , 分別是, 的中點(diǎn).

(Ⅰ)求證: 平面;

(Ⅱ)求三棱錐的體積;

(Ⅲ)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)的一種產(chǎn)品的廣告費(fèi)用 (單位:萬元)與銷售額 (單位:萬元)的統(tǒng)計(jì)數(shù)據(jù)如下表:

廣告費(fèi)用

銷售額

(1)根據(jù)上述數(shù)據(jù),求出銷售額(萬元)關(guān)于廣告費(fèi)用(萬元)的線性回歸方程;

(2)如果企業(yè)要求該產(chǎn)品的銷售額不少于萬元,則投入的廣告費(fèi)用應(yīng)不少于多少萬元?

(參考數(shù)值: .

回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:

查看答案和解析>>

同步練習(xí)冊答案