已知A是角α終邊上一點(diǎn),且A點(diǎn)的坐標(biāo)為(
3
5
,
4
5
),則
1
2sinαcosα+cos2α
=
 
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:三角函數(shù)的求值
分析:利用三角函數(shù)的定義可求得sinα=
4
5
,cosα=
3
5
,代入所求關(guān)系式計算即可.
解答: 解:∵sinα=
4
5
,cosα=
3
5
,
1
2sinαcosα+cos2α
=
1
4
5
×
3
5
+(
3
5
)
2
=
25
33
,
故答案為:
25
33
點(diǎn)評:本題考查三角函數(shù)的定義,考查運(yùn)算求解能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知:定點(diǎn)A(-1,0),點(diǎn)B是⊙F:(x-1)2+y2=8(F為圓心)上的動點(diǎn),線段AB的垂直平分線交BF于點(diǎn)G,記點(diǎn)G的軌跡為曲線E.
(1)求曲線E的方程;
(2)設(shè)過點(diǎn)A的直線l與曲線E交于P、Q兩點(diǎn).在x軸上是否存在一點(diǎn)M,使得
MP
MQ
恒為常數(shù)?若存在,求出M點(diǎn)的坐標(biāo)和這個常數(shù);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x
3a
+
y
4a
≤1
x≥0
y≥0
,若z=
x+2y+3
x+1
的最小值為
3
2
,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中:
①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函數(shù),則實數(shù)b=2;
②f(x)=
2013-x2
+
x2-2013
既是奇函數(shù)又是偶函數(shù);
③已知f(x)是定義在R上的奇函數(shù),若當(dāng)x∈[0,+∞)時,f(x)=x(1+x),則當(dāng)x∈R時,f(x)=x(1+|x|);
④已知f(x)是定義在R上的不恒為零的函數(shù),且對任意的x,y∈R都滿足f(x•y)=x•f(y)+y•f(x),則f(x)是奇函數(shù).其中正確說法的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于有下列命題:
①函數(shù)f(x)=|sin2x|的最小正周期是
π
2

②函數(shù)y=sin(
2
+x)
是偶函數(shù)
x=
π
8
是函數(shù)y=sin(2x+
4
)
的一條對稱軸
④點(diǎn)(
π
2
,0)
是函數(shù)y=tan(x+
π
3
)
的圖象的對稱中心
⑤存在實數(shù)α使sinαcosα=1
其中正確命題的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有5輛6噸的汽車,4輛4噸的汽車,要運(yùn)送最多的貨物,完成這項運(yùn)輸任務(wù)的線性目標(biāo)函數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果實數(shù)x、y滿足
x-y+3≥0
x+y-1≥0
x≤1
,若直線y=k(x-1)將可行域分成面積相等的兩部分,則實數(shù)k的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)及其導(dǎo)數(shù)f′(x),若存在x0,使得f(x0)=f′(x0),則稱x0是f(x)的一個“巧值點(diǎn)”,下列函數(shù)中,有“巧值點(diǎn)”的函數(shù)的個數(shù)是(  )
①f(x)=x2,②f(x)=e-x,③f(x)=lnx,④f(x)=tanx,⑤f(x)=x+
1
x
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,三頂點(diǎn)分別為A(2,4),B(-1,2),C(1,0),點(diǎn)P(x,y)在△ABC內(nèi)部及其邊界上運(yùn)動,則m=y-x的取值范圍為( 。
A、[1,3]
B、[-3,1]
C、[-1,3]
D、[-3,-1]

查看答案和解析>>

同步練習(xí)冊答案