設函數(shù)f(x)=x3-12x,則下列結論正確的是(  )
分析:先求出其導函數(shù),利用其導函數(shù)畫出原函數(shù)的大致圖象,結合圖象即可判斷出正確結論.
解答:解:因為f(x)=x3-12x,
所以:f′(x)=3x2-12=3(x-2)(x+2).
由f′(x)>0⇒x>2或x<-2.
f′(x)<0⇒-2<x<2.
∴f(x)在(-∞,-2),(2,+∞)上遞增,在(-2,2)上遞減.
且f(x)在x=-2處有極大值為:f(-2)=16,在x=2處有極小值為:f(2)=-16.
其大致圖象為:
故答案A,B,C錯.
故選:D.
點評:本題主要考查學生會利用導數(shù)求曲線上過某點切線方程的斜率,會利用導數(shù)研究函數(shù)的單調(diào)區(qū)間以及根據(jù)函數(shù)的增減性得到函數(shù)的最值.解決此類問題的關鍵在于會求常見函數(shù)的導函數(shù),并知道導函數(shù)的應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

18、設函數(shù)f(x)=x3-3ax2+3bx的圖象與直線12x+y-1=0相切于點(1,-11).
(Ⅰ)求a,b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x3+ax2+x+1,a∈R.
(1)若x=1時,函數(shù)f(x)取得極值,求函數(shù)f(x)的圖象在x=-1處的切線方程;
(2)若函數(shù)f(x)在區(qū)間(
12
,1)
內(nèi)不單調(diào),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x3+ax2-a2x+5(a>0)
(1)當函數(shù)f(x)有兩個零點時,求a的值;
(2)若a∈[3,6],當x∈[-4,4]時,求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x3-3x2-9x-1.求:
(Ⅰ)函數(shù)在(1,f(1))處的切線方程;
(Ⅱ)函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x3•cosx+1,若f(a)=5,則f(-a)=
 

查看答案和解析>>

同步練習冊答案