【題目】已知函數(shù)

1)求上的最值;

2)設(shè),若當,且時,,求整數(shù)的最小值.

【答案】1)詳見解析;(2

【解析】

1)求出函數(shù)的導(dǎo)數(shù),通過討論的范圍,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最值即可;

2)由,令,,已知可化為恒成立,根據(jù)函數(shù)的單調(diào)性求出整數(shù)的最小值即可.

解:(1,,

①當時,因為,所以上單調(diào)遞減,

所以,無最小值.

②當時,上單調(diào)遞減,在上單調(diào)遞增;

所以,無最大值.

③當時,因為,等號僅在,時成立,

所以上單調(diào)遞增,所以,無最大值.

綜上,當時,,無最小值;當時,,無最大值;

時,,無最大值.

2,

時,因為,由(1)知,所以(當時等號成立),所以

時,因為,所以,所以,

,,已知化為上恒成立,

因為,令,,則,

上單調(diào)遞減,又因為,,

所以存在使得,

時,,,上單調(diào)遞增;

時,,上單調(diào)遞減;

所以

因為,所以,所以,

所以的最小整數(shù)值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系xOy中,曲線C1的參數(shù)方程為為參數(shù)),以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C2ρ24ρcosθ+30

1)求曲線C1的一般方程和曲線C2的直角坐標方程;

2)若點P在曲線C1上,點Q曲線C2上,求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著醫(yī)院對看病掛號的改革,網(wǎng)上預(yù)約成為了當前最熱門的就診方式,這解決了看病期間病人插隊以及醫(yī)生先治療熟悉病人等諸多問題;某醫(yī)院研究人員對其所在地區(qū)年齡在10~60歲間的位市民對網(wǎng)上預(yù)約掛號的了解情況作出調(diào)查,并將被調(diào)查的人員的年齡情況繪制成頻率分布直方圖,如下所示.

1)若被調(diào)查的人員年齡在20~30歲間的市民有300人,求被調(diào)查人員的年齡在40歲以上(含40歲)的市民人數(shù);

2)若按分層抽樣的方法從年齡在以及內(nèi)的市民中隨機抽取10人,再從這10人中隨機抽取3人進行調(diào)研,記隨機抽取的3人中,年齡在內(nèi)的人數(shù)為,求的分布列以及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義域為的奇函數(shù),當時,.

1)求出函數(shù)R上的解析式;

2)畫出函數(shù)的圖象,并根據(jù)圖象寫出的單調(diào)區(qū)間.

3)求使時的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)在定義域上是單調(diào)遞增函數(shù),求的取值范圍;

2)若恒成立,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)).在以坐標原點為極點,軸正半軸為極軸的極坐標系中,曲線的極坐標方程為.

1)寫出的普通方程和的直角坐標方程;

2)若相交于兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】天文學(xué)中為了衡量星星的明暗程度,古希臘天文學(xué)家喜帕恰斯(,又名依巴谷)在公元前二世紀首先提出了星等這個概念.星等的數(shù)值越小,星星就越亮;星等的數(shù)值越大,它的光就越暗.到了1850年,由于光度計在天體光度測量中的應(yīng)用,英國天文學(xué)家普森()又提出了衡量天體明暗程度的亮度的概念.天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足.其中星等為的星的亮度為.已知心宿二的星等是1.00.“天津四的星等是1.25.“心宿二的亮度是天津四倍,則與最接近的是(較小時, )

A.1.24B.1.25C.1.26D.1.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為常數(shù),為自然對數(shù)的底數(shù).

(Ⅰ)若在區(qū)間上的最小值為1,求的值;

(Ⅱ)若“,使”為假命題,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)gx)=exax2axhx)=ex2xlnx.其中e為自然對數(shù)的底數(shù).

1)若fx)=hx)﹣gx).

①討論fx)的單調(diào)性;

②若函數(shù)fx)有兩個不同的零點,求實數(shù)a的取值范圍.

2)已知a0,函數(shù)gx)恰有兩個不同的極值點x1,x2,證明:

查看答案和解析>>

同步練習(xí)冊答案