【題目】已知函數(shù),其中為常數(shù),為自然對(duì)數(shù)的底數(shù).

(Ⅰ)若在區(qū)間,上的最小值為1,求的值;

(Ⅱ)若“,使”為假命題,求的取值范圍.

【答案】(Ⅰ);(Ⅱ)

【解析】

(Ⅰ)求得函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,求函數(shù)的極值即最值,由題意知, 函數(shù)的最小值只能在處取得,分別解方程求解即可.

(Ⅱ)若“,使”為假命題,等價(jià)于,為真命題,即,恒成立,通過(guò)分離參數(shù)法和構(gòu)造函數(shù)法,,結(jié)合導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,由零點(diǎn)存在性定理求出函數(shù)的最小值,進(jìn)而求出實(shí)數(shù)的取值范圍即可.

(Ⅰ)由題意知,函數(shù)的導(dǎo)數(shù)為,

所以當(dāng)時(shí),單調(diào)遞增,

當(dāng)時(shí),,單調(diào)遞減,

所以當(dāng)時(shí)有極大值即最大值,

即有的最小值只能在處取得.

1,解得,此時(shí)與函數(shù)最小值為1相矛盾,

不符合題意

e,解得,此時(shí)符合題意;

綜上可知;

(Ⅱ)若“,使”為假命題,

為真命題,

等價(jià)于,可得恒成立,

化簡(jiǎn)可得,恒成立,

,則,

,則上單調(diào)遞增,

因?yàn)?/span>,,

由零點(diǎn)存在性定理知,函數(shù)存在唯一零點(diǎn),

即有,則,

兩邊同時(shí)取以為底的對(duì)數(shù)可得,,

所以當(dāng)時(shí),,即,單調(diào)遞減,

當(dāng)時(shí),,即,單調(diào)遞增,

所以當(dāng)時(shí),函數(shù)有極小值即最小值,

,

所以實(shí)數(shù)的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圓錐(其中為頂點(diǎn),為底面圓心)的側(cè)面積與底面積的比是,則圓錐與它外接球(即頂點(diǎn)在球面上且底面圓周也在球面上)的體積比為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)求上的最值;

2)設(shè),若當(dāng),且時(shí),,求整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓)的左焦點(diǎn)為,其中四個(gè)頂點(diǎn)圍成的四邊形面積為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過(guò)點(diǎn)的直線與曲線交于,兩點(diǎn),設(shè)的中點(diǎn)為,,兩點(diǎn)為橢圓上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩點(diǎn),且),求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)與定點(diǎn)的距離和它到直線的距離的比是常數(shù),設(shè)點(diǎn)的軌跡為曲線.

1)求曲線的方程;

2)過(guò)點(diǎn)的直線與曲線交于兩點(diǎn),設(shè)的中點(diǎn)為,兩點(diǎn)為曲線上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩點(diǎn),且),求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】全國(guó)文明城市,簡(jiǎn)稱(chēng)文明城市,是指在全面建設(shè)小康社會(huì)中市民整體素質(zhì)和城市文明程度較高的城市.全國(guó)文明城市稱(chēng)號(hào)是反映中國(guó)大陸城市整體文明水平的最高榮譽(yù)稱(chēng)號(hào).為普及相關(guān)知識(shí),爭(zhēng)創(chuàng)全國(guó)文明城市,某市組織了文明城市知識(shí)競(jìng)賽,現(xiàn)隨機(jī)抽取了甲、乙兩個(gè)單位各5名職工的成績(jī)(單位:分)如下表:

(1)根據(jù)上表中的數(shù)據(jù),分別求出甲、乙兩個(gè)單位5名職工的成績(jī)的平均數(shù)和方差,并比較哪個(gè)單位的職工對(duì)文明城市知識(shí)掌握得更好;

(2)用簡(jiǎn)單隨機(jī)抽樣法從乙單位5名職工中抽取2人,求抽取的2名職工的成績(jī)差的絕對(duì)值不小于4的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,底面為菱形,平面,且,的中點(diǎn).

1)求證:平面;

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù),.

1)若曲線與直線的一個(gè)交點(diǎn)縱坐標(biāo)為,求的值;

2)若曲線上的點(diǎn)到直線的最大距離為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018614日,世界杯足球賽在俄羅斯拉開(kāi)帷幕,世界杯給俄羅斯經(jīng)濟(jì)帶來(lái)了一定的增長(zhǎng),某紀(jì)念商品店的銷(xiāo)售人員為了統(tǒng)計(jì)世界杯足球賽期間商品的銷(xiāo)售情況,隨機(jī)抽查了該商品商店某天200名顧客的消費(fèi)金額情況,得到如圖頻率分布表:將消費(fèi)顧客超過(guò)4萬(wàn)盧布的顧客定義為足球迷”,消費(fèi)金額不超過(guò)4萬(wàn)盧布的顧客定義為“非足球迷”。

消費(fèi)金額/萬(wàn)盧布

合計(jì)

顧客人數(shù)

9

31

36

44

62

18

200

(1)求這200名顧客消費(fèi)金額的中位數(shù)與平均數(shù)(同一組中的消費(fèi)金額用該組的中點(diǎn)值作代表;

(2)該紀(jì)念品商店的銷(xiāo)售人員為了進(jìn)一步了解這200名顧客喜歡紀(jì)念品的類(lèi)型,采用分層抽樣的方法從“非足球迷”,“足球迷”中選取5人,再?gòu)倪@5人中隨機(jī)選取3人進(jìn)行問(wèn)卷調(diào)查,則選取的3人中“非足球迷”人數(shù)的分布列和數(shù)學(xué)期望。

查看答案和解析>>

同步練習(xí)冊(cè)答案