【題目】如圖所示,在正方體中,分別為的中點.
(1)求證:平面;
(2)求證:平面.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線的參數(shù)方程:(為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程;
(2)過曲線上一點作直線與曲線交于兩點,中點為,,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知過點的直線與拋物線交于不同的兩點,點,連接的直線與拋物線的另一交點分別為,如圖所示.
(Ⅰ)若,求直線的斜率;
(Ⅱ)試判斷直線的斜率是否為定值,如果是,請求出此定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】四棱錐P﹣ABCD中,AB∥CD,AB⊥BC,AB=BC=1,PA=CD=2,PA⊥平面ABCD,E在棱PB上.
(Ⅰ)求證:AC⊥PD;
(Ⅱ)若VP﹣ACE,求證:PD∥平面AEC.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐S﹣ABCD中,SD=CD=SC=2AB=2BC,平面ABCD⊥底面SDC,AB∥CD,∠ABC=90°,E是SD中點.
(1)證明:直線AE//平面SBC;
(2)點F為線段AS的中點,求二面角F﹣CD﹣S的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線上的點到其焦點距離為3,過拋物線外一動點作拋物線的兩條切線,切點分別為,且切點弦恒過點.
(1)求和;
(2)求證:動點在一條定直線上運動.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,定義:以橢圓中心為圓心,長軸為直徑的圓叫做橢圓的“輔助圓”.過橢圓第四象限內(nèi)一點M作x軸的垂線交其“輔助圓”于點N,當點N在點M的下方時,稱點N為點M的“下輔助點”.已知橢圓E:上的點的下輔助點為(1,﹣1).
(1)求橢圓E的方程;
(2)若△OMN的面積等于,求下輔助點N的坐標;
(3)已知直線l:x﹣my﹣t=0與橢圓E交于不同的A,B兩點,若橢圓E上存在點P,滿足,求直線l與坐標軸圍成的三角形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)若是單調(diào)函數(shù),則實數(shù)的取值范圍是_________;若存在實數(shù),使函數(shù)有三個零點,則實數(shù)的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極值.
(2),若不等式在上恒成立,求的最大值.
(3)是否存在實數(shù),使得函數(shù)在上的值域為?如果存在,請給出證明;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com