精英家教網 > 高中數學 > 題目詳情

【題目】在四棱錐中,平面平面.底面為梯形,,且,,.

1)求證:

2)求二面角的余弦值;

3)若是棱的中點,求證:對于棱上任意一點,都不平行.

【答案】1)見解析;(2;(3)見解析

【解析】

1)由面面垂直的性質可得平面,再利用線面垂直的性質即可得證;

2)建立空間直角坐標系后,表示出各點坐標,求出平面的一個法向量是,平面的一個法向量為,利用即可得解;

3)利用反證法,假設棱上存在點,,由題意,,設可得,此方程無解,故假設錯誤,即可得證.

1)證明:因為平面平面, 平面平面,

平面,

所以平面,

又因為平面,

所以.

2)因為,,所以.

由(1)得平面,所以,

,兩兩垂直.

如圖,以為原點,,所在直線分別為軸,

建立空間直角坐標系,

,,,.

因為平面,所以平面的一個法向量是.

,

設平面的一個法向量為,

則由 ,有

所以.

由題知,二面角為銳角,所以二面角的余弦值為.

3)證明:假設棱上存在點,設.

依題意,可知,,

所以,,設,

根據假設,有 ,而此方程組無解,故假設錯誤,問題得證.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】隨著我國經濟實力的不斷提升,居民收人也在不斷增加。某家庭2018年全年的收入與2014年全年的收入相比增加了一倍,實現翻番.同時該家庭的消費結構隨之也發(fā)生了變化,現統計了該家庭這兩年不同品類的消費額占全年總收入的比例,得到了如下折線圖:

則下列結論中正確的是( )

A. 該家庭2018年食品的消費額是2014年食品的消費額的一半

B. 該家庭2018年教育醫(yī)療的消費額與2014年教育醫(yī)療的消費額相當

C. 該家庭2018年休閑旅游的消費額是2014年休閑旅游的消費額的五倍

D. 該家庭2018年生活用品的消費額是2014年生活用品的消費額的兩倍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,橢圓的左、右頂點分別為,,上、下頂點分別為,,且,為等邊三角形,過點的直線與橢圓軸右側的部分交于、兩點.

1)求橢圓的標準方程;

2)求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐的底面中,,,平面,的中點,且

(Ⅰ)求證:平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)線段上是否存在點,使得,若存在指出點的位置,若不存在請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,過橢圓右焦點的直線與橢圓交于,兩點,當直線軸垂直時,.

1)求橢圓的標準方程;

2)當直線軸不垂直時,在軸上是否存在一點(異于點),使軸上任意點到直線,的距離均相等?若存在,求點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列命題中不正確的是( 。

A.為直線,為平面,且;則的充要條件

B.設隨機變量,若,則

C.若不等式()恒成立,則的取值范圍是

D.已知直線經過點,則的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形, , 的中點。

1)證明: 平面;

2)設, ,三棱錐的體積 ,求A到平面PBC的距離。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)求函數的極值;

(2)若, 是方程)的兩個不同的實數根,求證: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的焦距為2,過右焦點和短軸一個端點的直線的斜率為,為坐標原點.

1)求橢圓的方程;

2)設點,直線與橢圓C交于兩個不同點P,Q,直線APx軸交于點M,直線AQx軸交于點N,若|OM|·|ON|=2,求證:直線l經過定點.

查看答案和解析>>

同步練習冊答案