【題目】已知命題表示雙曲線,命題表示橢圓.

1)若命題p與命題q都為真命題,則pq的什么條件?

2)若為假命題,且為真命題,求實(shí)數(shù)m的取值范圍.

【答案】1)必要而不充分條件;(2

【解析】

1)首先根據(jù)雙曲線和橢圓的標(biāo)準(zhǔn)方程計(jì)算命題,是真命題時(shí)的范圍,再根據(jù)的范圍即可得到答案.

2)首先根據(jù)題意得到,一真一假,再分類討論假和真的情況即可得到答案.

1)因?yàn)槊}表示雙曲線是真命題,

所以.解得

又∵命題表示橢圓是真命題,

所以解得

因?yàn)?/span>

所以pq的必要而不充分條件.

2)∵為假命題,且為真命題,

一真一假.

當(dāng)假時(shí),由(1)可知,

為真,有,①

為假,有

由①②解得

當(dāng)真時(shí),由(1)可知,

為假,有,③

為真,有

由③④解得,無解.

綜上,可得實(shí)數(shù)m的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且函數(shù)奇函數(shù)而非偶函數(shù).

1)寫出的單調(diào)性(不必證明);

2)當(dāng)時(shí),的取值范圍恰為,求的值;

3)設(shè)是否存在實(shí)數(shù)使得函數(shù)有零點(diǎn)?若存在,求出實(shí)數(shù)的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】呼和浩特市地鐵一號(hào)線于20191229日開始正式運(yùn)營有關(guān)部門通過價(jià)格聽證會(huì),擬定地鐵票價(jià)后又進(jìn)行了一次調(diào)查.調(diào)查隨機(jī)抽查了50人,他們的月收入情況與對(duì)地鐵票價(jià)格態(tài)度如下表:

月收入(單位:百元)

認(rèn)為票價(jià)合理的人數(shù)

1

2

3

5

3

4

認(rèn)為票價(jià)偏高的人數(shù)

4

8

12

5

2

1

1)若以區(qū)間的中點(diǎn)值作為月收入在該區(qū)間內(nèi)人的人均月收入求參與調(diào)查的人員中認(rèn)為票價(jià)合理者的月平均收入與認(rèn)為票價(jià)偏高者的月平均收入的差是多少(結(jié)果保留2位小數(shù));

2)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表分析是否有的把握認(rèn)為月收入以5500元為分界點(diǎn)對(duì)地鐵票價(jià)的態(tài)度有差異

月收入不低于5500元人數(shù)

月收入低于5500元人數(shù)

合計(jì)

認(rèn)為票價(jià)偏高者

認(rèn)為票價(jià)合理者

合計(jì)

附:

0.05

0.01

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)時(shí)都取得極值.

(1)求實(shí)數(shù)的值;

(2)若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線的焦點(diǎn)為,準(zhǔn)線為,是拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足.設(shè)線段的中點(diǎn)上的投影為,則的最大值是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)x,y,z為空間不同的直線或不同的平面,且直線不在平面內(nèi),下列說法能保證,則為真命題的序號(hào)為______.

x為直線,y,z為平面;

xy,z都為平面;

x,y為直線,z為平面;

x,yz都為直線;

xy為平面,z為直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)某兩名高三學(xué)生在連續(xù)9次數(shù)學(xué)測(cè)試中的成績(單位:分)進(jìn)行統(tǒng)計(jì)得到如下折線圖。下面關(guān)于這兩位同學(xué)的數(shù)學(xué)成績的分析中,正確的共有( )個(gè)。

甲同學(xué)的成績折線圖具有較好的對(duì)稱性,與正態(tài)曲線相近,故而平均成績?yōu)?30分;

根據(jù)甲同學(xué)成績折線圖提供的數(shù)據(jù)進(jìn)行統(tǒng)計(jì),估計(jì)該同學(xué)平均成績?cè)趨^(qū)間內(nèi);

乙同學(xué)的數(shù)學(xué)成績與考試次號(hào)具有比較明顯的線性相關(guān)性,且為正相關(guān);

乙同學(xué)在這連續(xù)九次測(cè)驗(yàn)中的最高分與最低分的差超過40分

A.1 B.2

C.3 D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列對(duì)各事件發(fā)生的概率判斷正確的是(

A.某學(xué)生在上學(xué)的路上要經(jīng)過4個(gè)路口,假設(shè)在各路口是否遇到紅燈是相互獨(dú)立的,遇到紅燈的概率都是,那么該生在上學(xué)路上到第3個(gè)路口首次遇到紅燈的概率為

B.三人獨(dú)立地破譯一份密碼,他們能單獨(dú)譯出的概率分別為,假設(shè)他們破譯密碼是彼此獨(dú)立的,則此密碼被破譯的概率為

C.甲袋中有8個(gè)白球,4個(gè)紅球,乙袋中有6個(gè)白球,6個(gè)紅球,從每袋中各任取一個(gè)球,則取到同色球的概率為

D.設(shè)兩個(gè)獨(dú)立事件AB都不發(fā)生的概率為,A發(fā)生B不發(fā)生的概率與B發(fā)生A不發(fā)生的概率相同,則事件A發(fā)生的概率是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解本市的交通狀況,某校高一年級(jí)的同學(xué)分成了甲、乙、丙三個(gè)組,從下午13點(diǎn)到18點(diǎn),分別對(duì)三個(gè)路口的機(jī)動(dòng)車通行情況進(jìn)行了實(shí)際調(diào)查,并繪制了頻率分布直方圖(如圖),記甲、乙、丙三個(gè)組所調(diào)查數(shù)據(jù)的標(biāo)準(zhǔn)差分別為,則它們的大小關(guān)系為( )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案