已知函數(shù)f(x)是定義在(-1,1)上的奇函數(shù),且單調遞減,若f(1-a)+f(1-a2)>0,求實數(shù)a的取值范圍.
分析:原不等式即f(1-a)>-f(1-a2),根據(jù)f(x)是奇函數(shù),化為f(1-a)>f(-1+a2),再由f(x)是定義在(-1,1)上的單調遞減函數(shù),建立關于a的不等式組,解之即可得到實數(shù)a的取值范圍.
解答:解:不等式f(1-a)+f(1-a2)>0,即f(1-a)>-f(1-a2),
∵函數(shù)f(x)是奇函數(shù),
∴不等式f(1-a)>-f(1-a2)可化為f(1-a)>f(-1+a2),
又∵f(x)是定義在(-1,1)上的單調遞減函數(shù),
∴-1<1-a<-1+a2<1,解之得1<a<
2

即實數(shù)a的取值范圍是(1,
2
).
點評:本題給出奇函數(shù)滿足的條件,求函數(shù)的表達式并依此解關于a的不等式,著重考查了函數(shù)的奇偶性、單調性和不等式的解法等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2x+2-x
2
,g(x)=
2x-2-x
2

(1)計算:[f(1)]2-[g(1)]2;
(2)證明:[f(x)]2-[g(x)]2是定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網已知函數(shù)f(x)=x+
a
x
的定義域為(0,+∞),且f(2)=2+
2
2
.設點P是函數(shù)圖象上的任意一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值.
(2)問:|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請說明理由.
(3)設O為坐標原點,求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)
是f(x)圖象上的兩點,橫坐標為
1
2
的點P滿足2
OP
=
OM
+
ON
(O為坐標原點).
(Ⅰ)求證:y1+y2為定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn為數(shù)列{an}的前n項和,若Tn<m(Sn+1+1)對一切n∈N*都成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)是f(x)圖象上的兩點,且x1+x2=1.
(1)求證:y1+y2為定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,N≥2),求Sn;
(3)在(2)的條件下,若an=
1
6
 ,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn為數(shù)列{an}的前n項和.求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線y=m與兩個相鄰函數(shù)的交點為A,B,若m變化時,AB的長度是一個定值,則AB的值是(  )

查看答案和解析>>

同步練習冊答案