15.用列舉法表示小于10的所有自然數(shù)組成的集合{0,1,2,3,4,5,6,7,8,9}.

分析 依次列舉出即可.

解答 解:小于10的所有自然數(shù)有0,1,2,3,4,5,6,7,8,9;
故小于10的所有自然數(shù)組成的集合為{0,1,2,3,4,5,6,7,8,9},
故答案為:{0,1,2,3,4,5,6,7,8,9}.

點(diǎn)評(píng) 本題考查了集合的表示法的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)f(x)=$\frac{\sqrt{x+1}}{x-5}$的定義域?yàn)椋ā 。?table class="qanwser">A.[-1,+∞)B.[-1,5)∪(5,+∞)C.[-1,5)D.(5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知銳角△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且b=2,c=3,△ABC的面積為$\frac{3\sqrt{3}}{2}$,又$\overrightarrow{AC}$=2$\overrightarrow{CD}$,∠CBD=θ.
(1)求a,A,cosB;
(2)求cos2θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.$\int_0^1$($\sqrt{1-{x^2}}}$+2x)dx=$\frac{π+4}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-4x+6,x≥0}\\{x+6,x<0}\end{array}\right.$,則不等式f(x)≤f(1)的解集是(  )
A.[-3,1]∪[3,+∞)B.[-3,1]∪[2,+∞)C.[-1,1]∪[3,+∞)D.(-∞,-3]∪[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.求證:
(1)$\frac{1-co{s}^{2}α}{sinα-cosα}$-$\frac{sinα+cosα}{ta{n}^{2}α-1}$=sinα+cosα;
(2)(2-cos2α)(2+tan2α)=(1+2tan2α)(1+cos2α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.研究問(wèn)題:“已知關(guān)于x的不等式ax2-bx+c>0,令y=$\frac{1}{x}$,則y∈($\frac{1}{2}$,1),所以不等式cx2-bx+a>0的解集為($\frac{1}{2}$,1)”.類(lèi)比上述解法,已知關(guān)于x的不等式$\frac{k}{x+a}$+$\frac{x+b}{x+c}$<0的解集為(-2,-1)∪(2,3),則關(guān)于x的不等式$\frac{kx}{ax-1}$+$\frac{bx-1}{cx-1}$<0的解集為(-$\frac{1}{2}$,-$\frac{1}{3}$)∪($\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知冪函數(shù)過(guò)點(diǎn)(2,4),則f(3)=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知二次函數(shù)f(x)=ax2-bx+2.
(1)若不等式f(x)>0的解集為{x|x>2或x<1},求a和b的值;
(2)若b=2a+1,對(duì)任意a∈[$\frac{1}{2}$,1],f(x)>0恒成立,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案