(本小題滿分15分) 已知拋物線C的頂點(diǎn)在原點(diǎn), 焦點(diǎn)為F(0,1).

(1) 求拋物線C的方程;

(2)在拋物線C上是否存在點(diǎn)P, 使得過點(diǎn)P

的直線交C于另一點(diǎn)Q,滿足PFQF, 且

PQ與C在點(diǎn)P處的切線垂直.若存在,求出

點(diǎn)P的坐標(biāo); 若不存在,請說明理由.

 

【答案】

(1)  解: 設(shè)拋物線C的方程是x2 = ay, 高則,        即a = 4 .

故所求拋物線C的方程為x2 = 4y .             …………………(5分)

(2) 解:設(shè)P(x1, y1), Q(x2, y2) , 則拋物線C在點(diǎn)P處的切線方程是: ,

直線PQ的方程是:  .

將上式代入拋物線C的方程, 得:,

x1+x2=, x1x2=-8-4y1,所以 x2=x1 , y2=+y1+4 .

=(x1, y1-1), =(x2, y2-1),×x1 x2+(y1-1) (y2-1)=x1 x2y1 y2-(y1y2)+1=-4(2+y1)+ y1(+y1+4)-(+2y1+4)+1=-2y1-7=(+2y1+1)-4(+y1+2)=(y1+1)2=0,

y1=4, 此時, 點(diǎn)P的坐標(biāo)是(±4,4) .  經(jīng)檢驗(yàn), 符合題意. 

所以, 滿足條件的點(diǎn)P存在, 其坐標(biāo)為P(±4,4). ………………(15分)

 

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分15分)

已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若,試分別解答以下兩小題.

(ⅰ)若不等式對任意的恒成立,求實(shí)數(shù)的取值范圍;

(ⅱ)若是兩個不相等的正數(shù),且,求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三下學(xué)期3月聯(lián)考理科數(shù)學(xué) 題型:解答題

(本小題滿分15分).

已知、分別為橢圓

上、下焦點(diǎn),其中也是拋物線的焦點(diǎn),

點(diǎn)在第二象限的交點(diǎn),且。

(Ⅰ)求橢圓的方程;

(Ⅱ)已知點(diǎn)P(1,3)和圓,過點(diǎn)P的動直線與圓相交于不同的兩點(diǎn)A,B,在線段AB取一點(diǎn)Q,滿足:,)。求證:點(diǎn)Q總在某定直線上。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三上學(xué)期第三次月考數(shù)學(xué)文卷 題型:解答題

(本小題滿分15分)

如圖已知,橢圓的左、右焦點(diǎn)分別為、,過的直線與橢圓相交于A、B兩點(diǎn)。

(Ⅰ)若,且,求橢圓的離心率;

(Ⅱ)若的最大值和最小值。

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆浙江省寧波市高一上學(xué)期期末考試數(shù)學(xué) 題型:解答題

(本小題滿分15分)若函數(shù)在定義域內(nèi)存在區(qū)間,滿足上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052202033078124869/SYS201205220205036875888611_ST.files/image002.png">,則稱這樣的函數(shù)為“優(yōu)美函數(shù)”.

(Ⅰ)判斷函數(shù)是否為“優(yōu)美函數(shù)”?若是,求出;若不是,說明理由;

(Ⅱ)若函數(shù)為“優(yōu)美函數(shù)”,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年江蘇省高二下學(xué)期期中考試?yán)頂?shù) 題型:解答題

(本小題滿分15分)在5道題中有3道理科題和2道文科題,如果不放回地依次抽取2道題.求:

(1)第1次抽到理科題的概率;

(2)第1次和第2次都抽到理科題的概率;

(3)在第1次抽到理科題的條件下,第2次抽到文科題的概率

 

 

查看答案和解析>>

同步練習(xí)冊答案