【題目】已知數(shù)列的前項(xiàng)和為,且滿足,,設(shè),.
(Ⅰ)求證:數(shù)列是等比數(shù)列;
(Ⅱ)若,,求實(shí)數(shù)的最小值;
(Ⅲ)當(dāng)時(shí),給出一個新數(shù)列,其中,設(shè)這個新數(shù)列的前項(xiàng)和為,若可以寫成(,且,)的形式,則稱為“指數(shù)型和”.問中的項(xiàng)是否存在“指數(shù)型和”,若存在,求出所有“指數(shù)型和”;若不存在,請說明理由.
【答案】(I)詳見解析;(II);(III)為指數(shù)型和.
【解析】
(I)通過計(jì)算證明證得,來證得數(shù)列是等比數(shù)列.
(II)利用求得數(shù)列的通項(xiàng)公式,由,,求得的最小值.
(III)先求得的通項(xiàng)公式,對分成偶數(shù)和奇數(shù)兩種情況進(jìn)行分類討論,根據(jù)“指數(shù)型和”的定義,求出符合題意的“指數(shù)型和”.
(I),.由于,當(dāng)時(shí),,所以數(shù)列是等比數(shù)列.,.
(II)由(I)得,,所以.因?yàn)?/span>,.當(dāng)時(shí),
,,而,所以,即,化簡得,由于當(dāng)時(shí),單調(diào)遞減,最大值為,所以
,又,所以的最小值為.
(III)由(I)當(dāng)時(shí),,當(dāng)時(shí),.也符合上式,所以對正整數(shù)都有.由,(且),只能是不小于的奇數(shù).
①當(dāng)為偶數(shù)時(shí),,由于和都是大于的正整數(shù),所以存在正整數(shù),使得,,所以,且,相應(yīng)的,即有,為“指數(shù)型和”;
② 當(dāng)為奇數(shù)時(shí),,由于是個奇數(shù)之和,仍為奇數(shù),又為正偶數(shù),所以不成立,此時(shí)沒“指數(shù)型和”.
綜上所述,中的項(xiàng)存在“指數(shù)型和”,為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】兩地相距千米,汽車從地勻速行駛到地,速度不超過千米小時(shí),已知汽車每小時(shí)的運(yùn)輸成本(單位:元)由可變部分和固定部分兩部分組成:可變部分與速度的平方成正比,比例系數(shù)為,固定部分為元,
(1)把全程運(yùn)輸成本(元)表示為速度(千米小時(shí))的函效:并求出當(dāng)時(shí),汽車應(yīng)以多大速度行駛,才能使得全程運(yùn)輸成本最;
(2)隨著汽車的折舊,運(yùn)輸成本會發(fā)生一些變化,那么當(dāng),此時(shí)汽車的速度應(yīng)調(diào)整為多大,才會使得運(yùn)輸成本最小,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對相關(guān)系數(shù)r來說,下列說法正確的是( 。.
A.,越接近0,相關(guān)程度越大;越接近1,相關(guān)程度越小
B.,越接近1,相關(guān)程度越大;越大,相關(guān)程度越小
C.,越接近1,相關(guān)程度越大;越接近0,相關(guān)程度越小
D.,越接近1,相關(guān)程度越。越大,相關(guān)程度越大
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知、,、分別為的外心,重心,.
(1)求點(diǎn)的軌跡的方程;
(2)是否存在過的直線交曲線于,兩點(diǎn)且滿足,若存在求出的方程,若不存在請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】棋盤上標(biāo)有第、、、、站,棋子開始位于第站,棋手拋擲均勻硬幣走跳棋游戲,若擲出正面,棋子向前跳出一站;若擲出反面,棋子向前跳出兩站,直到調(diào)到第站或第站時(shí),游戲結(jié)束.設(shè)棋子位于第站的概率為.
(1)當(dāng)游戲開始時(shí),若拋擲均勻硬幣次后,求棋手所走步數(shù)之和的分布列與數(shù)學(xué)期望;
(2)證明:;
(3)求、的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年高考剛過,為了解考生對全國2卷數(shù)學(xué)試卷難度的評價(jià),隨機(jī)抽取了某學(xué)校50名男考生與50名女考生,得到下面的列聯(lián)表:
非常困難 | 一般 | |
男考生 | 20 | 30 |
女考生 | 40 | 10 |
(1)分別估計(jì)該學(xué)校男考生、女考生覺得全國2卷數(shù)學(xué)試卷非常困難的概率;
(2)從該學(xué)校隨機(jī)抽取3名男考生,2名女考生,求恰有4名考生覺得全國2卷數(shù)學(xué)試卷非常困難的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]:在直角坐標(biāo)系中,直線的參數(shù)方程為(t為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為,已知直線與曲線C交于不同的兩點(diǎn)A,B.
(1)求直線的普通方程和曲線C的直角坐標(biāo)方程;
(2)設(shè)P(1,2),求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com