精英家教網 > 高中數學 > 題目詳情

【題目】已知點是菱形所在平面外一點,,,

1)求證:平面平面;

2)求二面角的余弦值.

【答案】1)見解析;(2

【解析】

1)因為是菱形,可得 ,進而證明,在由勾股定可證明,根據線面垂直的判定定理可證平面,再根據面面垂直的判定定理,即可證明結果;

2)根據題意建立空間直角坐標系,再利用空間向量的坐標運算公式求出二面角的余弦值.

1)證明:設的中點,連接,

是菱形,

,∴

,

平面,

平面,

∴平面平面

2)由(1)得,以點為坐標原點,的方向為軸的正方向,的方向為軸的正方向,建立如圖的空間直角坐標系,則

是平面的一個法向量,

,∴

,則,

是平面的一個法向量,

,∴,

,則,

又二面角為鈍二面角,

∴二面角的余弦值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】將函數fx)=cos2x)的圖象向左平移個單位長度后,得到函數gx)的圖象,則下列結論中正確的是_____.(填所有正確結論的序號)

gx)的最小正周期為4π

gx)在區(qū)間[0,]上單調遞減;

gx)圖象的一條對稱軸為x;

gx)圖象的一個對稱中心為(0).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy內,點()在橢圓Ea0,b0),橢圓E的離心率為,直線l過左焦點F且與橢圓E交于A、B兩點

1)求橢圓E的標準方程;

2)若動直線lx軸不重合,在x軸上是否存在定點P,使得PF始終平分∠APB?若存在,請求出點P的坐標:若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的長軸長為,焦距為2,拋物線的準線經過的左焦點.

(1)求的方程;

(2)直線經過的上頂點且交于,兩點,直線,分別交于點(異于點),(異于點),證明:直線的斜率為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】讀書可以讓人保持思想活躍,讓人得到智慧啟發(fā),讓人滋養(yǎng)浩然之氣,2018年第一期中國青年閱讀指數數據顯示,從供給的角度,文學閱讀域是最多的,遠遠超過了其他閱讀域的供給量.某校采用分層抽樣的方法從1000名文科生和2000名理科生中抽取300名學生進行了在暑假閱讀內容和閱讀時間方面的調查,得到數據如表:

文學閱讀人數

非文學閱讀人數

調查人數

理科生

130

文科生

45

合計

1)先完成上面的表格,并判斷能否有90%的把握認為學生所學文理與閱讀內容有關?

2300名被調查的學生中,隨機進取30名學生,整理其日平均閱讀時間(單位:分鐘)如表:

閱讀時間

男生人數

2

4

3

5

2

女生人數

1

3

4

3

3

試估計這30名學生日閱讀時間的平均值(同一組中的數據以這組數據所在區(qū)間中點的值作代表)

3)從(2)中日均閱讀時間不低于120分鐘的學生中隨機選取2人介紹閱讀心得,求這兩人都是女生的概率.

參考公式: ,其中.

參考數據:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系,曲線的參數方程為(其中為參數)曲線的普通方程為,以坐標原點為極點,以軸正半軸為極軸建立極坐標系.

1)求曲線和曲線的極坐標方程;

2)射線:依次與曲線和曲線交于、兩點,射線:依次與曲線和曲線交于、兩點,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐PABC中,PA⊥平面ABC,ABBCPAAB,DPB中點,PC3PE.

1)求證:平面ADE⊥平面PBC

2)在AC上是否存在一點M,使得MB∥平面ADE?若存在,請確定點M的位置,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐的一個側面為等邊三角形,且平面平面,四邊形是平行四邊形,,.

1)求證:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列的前項和為,且滿足,設,.

(Ⅰ)求證:數列是等比數列;

(Ⅱ)若,求實數的最小值;

(Ⅲ)當時,給出一個新數列,其中,設這個新數列的前項和為,若可以寫成,)的形式,則稱為“指數型和”.問中的項是否存在“指數型和”,若存在,求出所有“指數型和”;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案