【題目】在平面直角坐標(biāo)系xOy內(nèi),點()在橢圓Ea0,b0),橢圓E的離心率為,直線l過左焦點F且與橢圓E交于A、B兩點

1)求橢圓E的標(biāo)準(zhǔn)方程;

2)若動直線lx軸不重合,在x軸上是否存在定點P,使得PF始終平分∠APB?若存在,請求出點P的坐標(biāo):若不存在,請說明理由.

【答案】11;(2)存在,P(﹣4,0

【解析】

1)根據(jù),a2b2+c2和點()在橢圓E上,可得;(2)假設(shè)存在定點Pt,0)滿足題意,設(shè)直線l的方程xmy2,Ax,y),Bx',y'),

1)由題意得:ea,1,且a2b2+c2,解得:a28b24,

所以橢圓E的方程:1;

2)假設(shè)存在定點Pt,0)滿足題意,由(1)得左焦點F(﹣2,0),

設(shè)直線l的方程:xmy2,Axy),Bx',y'),

聯(lián)立與橢圓的方程整理得:(2+m2y24my40

y+y',yy'

PF始終平分∠APB知:kAP+kBP0,

所以kAP+kBP0,

xmy2,x'my'2,

2myy'﹣(t+2)(y+y')=0

2mt+20,

即(t+4m0,

t=﹣4

所以存在定點P(﹣4,0)滿足題意

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查民眾對國家實行新農(nóng)村建設(shè)政策的態(tài)度,現(xiàn)通過網(wǎng)絡(luò)問卷隨機調(diào)查了年齡在20周歲至80周歲的100人,他們年齡頻數(shù)分布和支持新農(nóng)村建設(shè)人數(shù)如下表:

年齡

頻數(shù)

10

20

30

20

10

10

支持新農(nóng)村建設(shè)

3

11

26

12

6

2

1)根據(jù)上述統(tǒng)計數(shù)據(jù)填下面的列聯(lián)表,并判斷是否有的把握認(rèn)為以50歲為分界點對新農(nóng)村建設(shè)政策的支持度有差異;

年齡低于50歲的人數(shù)

年齡不低于50歲的人數(shù)

合計

支持

不支持

合計

2)為了進一步推動新農(nóng)村建設(shè)政策的實施,中央電視臺某節(jié)目對此進行了專題報道,并在節(jié)目最后利用隨機撥號的形式在全國范圍內(nèi)選出4名幸運觀眾(假設(shè)年齡均在20周歲至80周歲內(nèi)),給予適當(dāng)?shù)莫剟?/span>.若以頻率估計概率,記選出4名幸運觀眾中支持新農(nóng)村建設(shè)人數(shù)為,試求隨機變量的分布列和數(shù)學(xué)期望.

參考數(shù)據(jù):

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=xlnx+1.

1)求函數(shù)fx)的單調(diào)區(qū)間;

2)求函數(shù)fx)的在區(qū)間[t,t+1](t>0)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

對函數(shù)Φx),定義fkx)=Φxmk)+nk(其中xmk,mmk],kZ,m0,n0,且m、n為常數(shù))為Φx)的第k階階梯函數(shù),m叫做階寬,n叫做階高,已知階寬為2,階高為3

1)當(dāng)Φx)=2xf0x)和fkx)的解析式;求證:Φx)的各階階梯函數(shù)圖象的最高點共線;

2)若Φx)=x2,則是否存在正整數(shù)k,使得不等式fkx)<(13kx4k23k1有解?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB2AD2,E為邊AB的中點,將ADE沿直線DE翻折成DE,使平面DE⊥平面BCDE,若M為線段C的中點,下面四個命題中不正確的是(

A.BM平面DEB.CE⊥平面DE

C.DEBMD.平面CD⊥平面CE

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班級有3名同學(xué)報名參加學(xué)校組織的辯論賽,現(xiàn)有甲、乙兩個辨題可以選擇,學(xué)校決定讓選手以抽取卡片(除上面標(biāo)的數(shù)不同外其他完全相同)的方式選擇辯題,且每名選手抽取后放回.已知共有10張卡片,卡片上分別標(biāo)有10個數(shù).若抽到卡片上的數(shù)為質(zhì)數(shù)(2,3,57),則選擇甲辨題,否則選擇乙辯題.

1)求這3名同學(xué)中至少有1人選擇甲辨題的概率.

2)用XY分別表示這3名同學(xué)中選擇甲、乙辨題的人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓方程),,是橢圓的左右焦點,以及橢圓短軸的一個端點為頂點的三角形是面積為的正三角形.

1)求橢圓方程;

2)過分別作直線,且,設(shè)與橢圓交于,兩點,與橢圓交于,兩點,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點是菱形所在平面外一點,,

1)求證:平面平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】兩地相距千米,汽車從地勻速行駛到地,速度不超過千米小時,已知汽車每小時的運輸成本(單位:元)由可變部分和固定部分兩部分組成:可變部分與速度的平方成正比,比例系數(shù)為,固定部分為元,

(1)把全程運輸成本()表示為速度(千米小時)的函效:并求出當(dāng)時,汽車應(yīng)以多大速度行駛,才能使得全程運輸成本最小;

(2)隨著汽車的折舊,運輸成本會發(fā)生一些變化,那么當(dāng),此時汽車的速度應(yīng)調(diào)整為多大,才會使得運輸成本最小,

查看答案和解析>>

同步練習(xí)冊答案