13.已知函數(shù)f(x)=(2x-4)ex+a(x+2)2(x>0,a∈R,e是自然對數(shù)的底).
(Ⅰ)若f(x)是(0,+∞)上的單調(diào)遞增函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)當$a∈(0,\frac{1}{2})$時,證明:函數(shù)f(x)有最小值,并求函數(shù)f(x)最小值的取值范圍.

分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)的單調(diào)性求出a的范圍即可;
(Ⅱ)根據(jù)函數(shù)的單調(diào)性求出f(x)的最小值,從而求出最小值的范圍即可.

解答 解:(Ⅰ)f'(x)=2ex+(2x-4)ex+2a(x+2)=(2x-2)ex+2a(x+2),
依題意:當x>0時,函數(shù)f'(x)≥0恒成立,即$a≥-\frac{{(x-1){e^x}}}{x+2}$恒成立,
記$g(x)=-\frac{{(x-1){e^x}}}{x+2}$,則$g'(x)=-\frac{{x{e^x}(x+2)-(x-1){e^x}}}{{{{(x+2)}^2}}}$=$-\frac{{({x^2}+x+1){e^x}}}{{{{(x+2)}^2}}}<0$,
所以g(x)在(0,+∞)上單調(diào)遞減,所以$g(x)<g(0)=\frac{1}{2}$,所以$a≥\frac{1}{2}$;---(6分)
(Ⅱ)因為[f'(x)]'=2xex+2a>0,所以y=f'(x)是(0,+∞)上的增函數(shù),
又f'(0)=4a-2<0,f'(1)=6a>0,所以存在t∈(0,1)使得f'(t)=0
且當a→0時t→1,當$a→\frac{1}{2}$時t→0,所以t的取值范圍是(0,1).-------(8分)
又當x∈(0,t),f'(x)<0,當x∈(t,+∞)時,f'(x)>0,
所以當x=t時,$f{(x)_{min}}=f(t)=(2t-4){e^t}+a{(t+2)^2}$.且有$f'(t)=0⇒a=-\frac{{(t-1){e^t}}}{t+2}$
由(Ⅰ)知$a=-\frac{{(t-1){e^t}}}{t+2}=g(t)$,在(0,+∞)上單調(diào)遞減,
又$g(0)=\frac{1}{2}$,g(1)=0,且$a∈(0,\frac{1}{2})$,故t∈(0,1),
∴$f{(x)_{min}}=f(t)=(2t-4){e^t}-(t-1)(t+2){e^t}={e^t}(-{t^2}+t-2)$,t∈(0,1)-------(10分)
記h(t)=et(-t2+t-2),則h'(t)=et(-t2+t-2)+et(-2t+1)=et(-t2-t-1)<0,
所以h(1)<h(t)<h(0),即最小值的取值范圍是(-2e,-2).-------(12分)

點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及轉(zhuǎn)化思想,是一道綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2017屆湖南長沙長郡中學(xué)高三上周測十二數(shù)學(xué)(理)試卷(解析版) 題型:解答題

已知五邊形由直角梯形與直角△構(gòu)成,如圖1所示,,,,且,將梯形沿著折起,形成如圖2所示的幾何體,且使平面平面

(1)在線段上存在點,且,證明:平面

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知雙曲線C經(jīng)過點(2,3),它的漸近線方程為y=±$\sqrt{3}$x,橢圓C1與雙曲線C有相同的焦點,橢圓C1的短軸長與雙曲線C的實軸長相等.
(1)求雙曲線C和橢圓C1的方程;
(2)經(jīng)過橢圓C1左焦點F的直線l與橢圓C1交于A、B兩點,是否存在定點D,使得無論AB怎樣運動,都有∠ADF=∠BDF;若存在,求出D點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合M={x|0<x<3},N={x|x>2},則M∩(∁RN)=( 。
A.(0,2]B.[0,2)C.(2,3)D.[2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=(2x-4)ex+a(x+2)2.(a∈R,e為自然對數(shù)的底)
(Ⅰ)當a=1時,求曲線y=f(x)在點P(0,f(0))處的切線方程;
(Ⅱ)當x≥0時,不等式f(x)≥4a-4恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知圓C:x2+y2=9,過點P(3,1)作圓C的切線,則切線方程為x=3或4x+3y-15=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知拋物線C:y2=4x焦點為F,直線MN過焦點F且與拋物線C交于M,N兩點,P為拋物線C準線l上一點且PF⊥MN,連接PM交y軸于Q點,過Q作QD⊥MF于點D,若|MD|=2|FN|,則|MF|=$\sqrt{3}$+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.觀察下列三角形數(shù)表:

假設(shè)第n行的第二個數(shù)為${a_n}({n≥2,n∈{N^*}})$,
(1)歸納出an+1與an的關(guān)系式,并求出an的通項公式;
(2)設(shè)anbn=1(n≥2),求證:b2+b3+…+bn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖是民航部門統(tǒng)計的2017年春運期間十二個城市售出的往返機票的平均價格以及相比去年同期變化幅度的數(shù)據(jù)統(tǒng)計圖表,根據(jù)圖表,下面敘述不正確的是(  )
A.深圳的變化幅度最小,北京的平均價格最高
B.深圳和廈門的春運期間往返機票價格同去年相比有所下降
C.平均價格從高到低居于前三位的城市為北京、深圳、廣州
D.平均價格變化量從高到低居于前三位的城市為天津、西安、廈門

查看答案和解析>>

同步練習(xí)冊答案