5.已知拋物線C:y2=4x焦點(diǎn)為F,直線MN過(guò)焦點(diǎn)F且與拋物線C交于M,N兩點(diǎn),P為拋物線C準(zhǔn)線l上一點(diǎn)且PF⊥MN,連接PM交y軸于Q點(diǎn),過(guò)Q作QD⊥MF于點(diǎn)D,若|MD|=2|FN|,則|MF|=$\sqrt{3}$+2.

分析 直線MN的方程為y=k(x-1),代入拋物線方程可得k2x2-(2k2+4)x+k2=0,求出k的值可得M的坐標(biāo),即可得出結(jié)論.

解答 解:設(shè)M(x1,y1),N(x2,y2),直線MN的方程為y=k(x-1),代入拋物線方程可得k2x2-(2k2+4)x+k2=0
∴x1+x2=2+$\frac{4}{{k}^{2}}$,
2|FN|=|MD|,可得2(x2+1)=|MD|,
∵$\frac{MD}{MF}=\frac{MQ}{MP}$,∴$\frac{2({x}_{2}+1)}{{x}_{1}+1}$=$\frac{{x}_{1}}{{x}_{1}+1}$,∴x2=$\frac{1}{2}{x}_{1}$-1,
聯(lián)立可得x1=2+$\frac{8}{3{k}^{2}}$,
∵x1=$\frac{{k}^{2}+2+2\sqrt{1+{k}^{2}}}{{k}^{2}}$,
∴2+$\frac{8}{3{k}^{2}}$=$\frac{{k}^{2}+2+2\sqrt{1+{k}^{2}}}{{k}^{2}}$,
∴3k2=4$\sqrt{3}$+4,
∴x1=$\sqrt{3}$+1,
∴|MF|=$\sqrt{3}$+2,
故答案為$\sqrt{3}$+2.

點(diǎn)評(píng) 本題考查拋物線的方程與性質(zhì),考查直線與拋物線的位置關(guān)系,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖,某幾何體的三視圖如圖所示,則該幾何體的各條棱中最長(zhǎng)的棱和最短的棱長(zhǎng)度之和為( 。
A.6B.4$\sqrt{2}$C.2$\sqrt{5}$+2D.2$\sqrt{6}$+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知集合U={1,2,3,4,5,6}M={1,2},N={2,3,4},則M∩(∁UN)=(  )
A.{1}B.{2}C.{1,2,5,6}D.{1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=(2x-4)ex+a(x+2)2(x>0,a∈R,e是自然對(duì)數(shù)的底).
(Ⅰ)若f(x)是(0,+∞)上的單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)$a∈(0,\frac{1}{2})$時(shí),證明:函數(shù)f(x)有最小值,并求函數(shù)f(x)最小值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知集合 A={x|x2<4},B={0,1,2,3},則A∩B=(  )
A.B.{0}C.{0,1}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足:a1=1,${S_{n+1}}-{S_n}=\frac{3^n}{a_n}(n∈{N^*})$,則該數(shù)列的前2017項(xiàng)和S2017=31009-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)f′(x)、g′(x)分別是函數(shù)f(x)、g(x)(x∈R)的導(dǎo)數(shù),且滿足g(x)>0,f′(x)g(x)-f(x)g′(x)>0.若△ABC中,∠C是鈍角,則( 。
A.f(sinA)•g(sinB)>f(sinB)•g(sinA)B.f(sinA)•g(sinB)<f(sinB)•g(sinA)
C.f(cosA)•g(sinB)>f(sinB)•g(cosA)D.f(cosA)•g(sinB)<f(sinB)•g(cosA)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知6只小白鼠有1只被病毒感染,需要通過(guò)對(duì)其化驗(yàn)病毒DNA來(lái)確定是否感染.下面是兩種化驗(yàn)方案:方案甲:逐個(gè)化驗(yàn),直到能確定感染為止.方案乙:將6只分為兩組,每組三個(gè),并將它們混合在一起化驗(yàn),若存在病毒DNA,則表明感染在這三只當(dāng)中,然后逐個(gè)化驗(yàn),直到確定感染為止;若結(jié)果不含病毒DNA,則在另外一組中逐個(gè)進(jìn)行化驗(yàn).
(1)求依據(jù)方案乙所需化驗(yàn)恰好為2次的概率.
(2)首次化驗(yàn)化驗(yàn)費(fèi)為10元,第二次化驗(yàn)化驗(yàn)費(fèi)為8元,第三次及其以后每次化驗(yàn)費(fèi)都是6元,列出方案甲所需化驗(yàn)費(fèi)用的分布列,并估計(jì)用方案甲平均需要化驗(yàn)費(fèi)多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知圓C:(x-1)2+y2=r2(r>0).設(shè)條件p:0<r<3,條件q:圓C上至多有2個(gè)點(diǎn)到直線x-$\sqrt{3}$y+3=0的距離為1,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案