【題目】函數(shù)f(x)的定義域?yàn)椋ī仭,a)∪(a,+∞),f(x)≥0的解集為M,f(x)<0的解集為N,則下列結(jié)論正確的是( 。
A.M=CRN
B.CRM∩CRN=
C.M∪N=R
D.CRM∪CRN=R

【答案】D
【解析】設(shè)A=(﹣∞,a)∪(a,+∞),根據(jù)題意得:M∪N=A,M∩N=,
則M=CRACRN,選項(xiàng)A錯(cuò)誤;
而CRM∩CRN=CR(M∪N)=CRA={a},選項(xiàng)B錯(cuò)誤;
則M∪N=A,選項(xiàng)C錯(cuò)誤;
則CRM∪CRN=CR(M∩N)=R,選項(xiàng)D正確,
故選D
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)的定義域及其求法,需要了解求函數(shù)的定義域時(shí),一般遵循以下原則:①是整式時(shí),定義域是全體實(shí)數(shù);②是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù);③是偶次根式時(shí),定義域是使被開方式為非負(fù)值時(shí)的實(shí)數(shù)的集合;④對(duì)數(shù)函數(shù)的真數(shù)大于零,當(dāng)對(duì)數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某批發(fā)市場(chǎng)對(duì)某種商品的日銷售量(單位:噸)進(jìn)行統(tǒng)計(jì),最近50天的統(tǒng)計(jì)結(jié)果如下:

若以上表中頻率作為概率,且每天的銷售量相互獨(dú)立.

(1)求5天中該種商品恰好有兩天的日銷售量為1.5噸的概率;

(2)已知每噸該商品的銷售利潤為2千元, 表示該種商品某兩天銷售利潤的和(單位:千元),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)是定義在(﹣∞,0)∪(0,+∞)上的偶函數(shù),當(dāng)x>0時(shí),
(1)求f(x)的解析式;
(2)討論函數(shù)f(x)的單調(diào)性,并求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四棱錐中,平面平面, , ,

(1)證明:在線段上存在一點(diǎn),使得平面

(2)若,在(1)的條件下,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=ax3x2+cx(a≠0)的圖象如圖所示,它與x軸僅有兩個(gè)公共點(diǎn)O(0,0)與A(xA , 0)(xA>0);
(1)用反證法證明常數(shù)c≠0;
(2)如果 ,求函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“莞馬”活動(dòng)中的α機(jī)器人一度成為新聞熱點(diǎn),為檢測(cè)其質(zhì)量,從一生產(chǎn)流水線上抽取20件該產(chǎn)品,其中合格產(chǎn)品有15件,不合格的產(chǎn)品有5件.
(1)現(xiàn)從這20件產(chǎn)品中任意抽取2件,記不合格的產(chǎn)品數(shù)為X,求X的分布列及數(shù)學(xué)期望;
(2)用頻率估計(jì)概率,現(xiàn)從流水線中任意抽取三個(gè)機(jī)器人,記ξ為合格機(jī)器人與不合格機(jī)器人的件數(shù)差的絕對(duì)值,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= 在點(diǎn)(1,2)處的切線與f(x)的圖象有三個(gè)公共點(diǎn),則b的取值范圍是(
A.[﹣8,﹣4+2
B.(﹣4﹣2 ,﹣4+2
C.(﹣4+2 ,8]
D.(﹣4﹣2 ,﹣8]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣alnx(a∈R)
(1)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)A(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱柱中,底面和側(cè)面都是矩形,的中點(diǎn),,.

(1)求證:底面;

(2)若直線與平面所成的角為,求四棱錐體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案