【題目】如圖,四棱柱中,底面和側(cè)面都是矩形,是的中點(diǎn),,.
(1)求證:底面;
(2)若直線與平面所成的角為,求四棱錐體積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)的定義域?yàn)椋ī仭,a)∪(a,+∞),f(x)≥0的解集為M,f(x)<0的解集為N,則下列結(jié)論正確的是( 。
A.M=CRN
B.CRM∩CRN=
C.M∪N=R
D.CRM∪CRN=R
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) ,區(qū)間M=[a,b](a<b),集合N={y|y=f(x),x∈M},則使M=N成立的實(shí)數(shù)對(a,b)有( 。
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.無數(shù)多個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面關(guān)于集合的表示正確的個(gè)數(shù)是( 。
①{2,3}≠{3,2}; ②{(x , y)|x+y=1}={y|x+y=1};
③{x|x>1}={y|y>1}; ④{x|x+y=1}={y|x+y=1}.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于集合A={x|x=m2﹣n2 , m∈Z,n∈Z},因?yàn)?6=52﹣32 , 所以16∈A,研究下列問題:
(1)1,2,3,4,5,6六個(gè)數(shù)中,哪些屬于A,哪些不屬于A,為什么?
(2)討論集合B={2,4,6,8,…,2n,…}中有哪些元素屬于A,試給出一個(gè)普通的結(jié)論,不必證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A(x1 , f(x1),B(x2 , f(x2))是函數(shù)f(x)=2sin(ωx+φ)(ω>0,﹣ <φ<0)圖象上的任意兩點(diǎn),且初相φ的終邊經(jīng)過點(diǎn)P(1,﹣ ),若|f(x1)﹣f(x2)|=4時(shí),|x1﹣x2|的最小值為 . (Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)當(dāng)x∈[0, ]時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)當(dāng)x∈[0, ]時(shí),不等式mf(x)+2m≥f(x)恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l: (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2.
(1)若點(diǎn)M的直角坐標(biāo)為(2, ),直線l與曲線C交于A、B兩點(diǎn),求|MA|+|MB|的值;
(2)設(shè)曲線C經(jīng)過伸縮變換 得到曲線C′,求曲線C′的內(nèi)接矩形周長的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】利民奶牛場在2016年年初開始改進(jìn)奶牛飼養(yǎng)方法,同時(shí)每月增加一定數(shù)目的產(chǎn)奶奶牛,2016年2到5月該奶牛場的產(chǎn)奶量如表所示:
月份 | 2 | 3 | 4 | 5 |
產(chǎn)奶量y(噸) | 2.5 | 3 | 4 | 4.5 |
(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點(diǎn)圖;
(2)求出y關(guān)于x的線性回歸方程;
(3)試預(yù)測該奶牛場6月份的產(chǎn)奶量? (注:回歸方程 = x+ 中, = = , = ﹣ )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x+2﹣x . (Ⅰ)試寫出這個(gè)函數(shù)的性質(zhì)(不少于3條,不必說明理由),并作出圖象;
(Ⅱ)設(shè)函數(shù)g(x)=4x+4﹣x﹣af(x),求這個(gè)函數(shù)的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com