【題目】如圖,在四面體中,,點分別是的中點.

求證:(1)直線平面;

(2)平面平面

【答案】證明:(1∵E,F分別是的中點.

∴EF△ABD的中位線,∴EF∥AD,

∵EF∥ACDADACD,直線EF∥ACD;

2∵AD⊥BD,EF∥AD,∴EF⊥BD,

∵CB=CDF是BD的中點,∴CF⊥BD

EF∩CF="F, " ∴BD⊥EFC,

∵BDBCD

【解析】

試題分析:(1)根據(jù)線面平行關(guān)系的判定定理,在面ACD內(nèi)找一條直線和直線EF平行即可,根據(jù)中位線可知EF∥AD,EFACD,ADACD,滿足定理條件;(2)需在其中一個平面內(nèi)找一條直線和另一個面垂直,由線面垂直推出面面垂直,根據(jù)線面垂直的判定定理可知BD⊥EFC,而BDBCD,滿足定理所需條件.

解析

(1)∵E,F(xiàn)分別是AB,BD的中點.

∴EF△ABD的中位線,∴EF∥AD,

∵EFACD,ADACD,∴直線EF∥ACD;

(2)∵AD⊥BD,EF∥AD,∴EF⊥BD,

∵CB=CD,F(xiàn)BD的中點,∴CF⊥BD

EF∩CF=F,∴BD⊥EFC,

∵BDBCD,∴EFC⊥BCD

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓 過定點 ,且在定圓 的內(nèi)部與其相內(nèi)切.
(1)求動圓圓心 的軌跡方程 ;
(2)直線 交于 兩點,與圓 交于 兩點,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 的焦點為 ,其準(zhǔn)線與 軸交于點 ,過 作斜率為 的直線 與拋物線交于 兩點,弦 的中點為 的垂直平分線與 軸交于
(1)求 的取值范圍;
(2)求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小王在年初用50萬元購買一輛大貨車,第一年因繳納各種費用需支出6萬元,從第二年起,每年都比上一年增加支出2萬元,假定該車每年的運輸收入均為25萬元.小王在該車運輸累計收入超過總支出后,考慮將大貨車作為二手車出售,若該車在第x年年底出售,其銷售價格為25x萬元(國家規(guī)定大貨車的報廢年限為10年).

1)大貨車運輸?shù)降趲啄昴甑祝撥囘\輸累計收入超過總支出?

2)在第幾年年底將大貨車出售,能使小王獲得的年平均利潤最大(利潤=累計收入+銷售收入-總支出)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}滿足:a1=,a2=2,3(an+1-2an+an-1)=2.

(1)證明:數(shù)列{an+1-an}是等差數(shù)列;

(2)求使+…+成立的最小的正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在 中,角 的對邊分別是 ,且有 .
(1)求
(2)若 ,求 面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知頂點在單位圓上的 中,角 的對邊分別為 ,且 .
(1)求 的值;
(2)若 ,求 的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在各項均為正數(shù)的等比數(shù)列 中, ,且 成等差數(shù)列.
(1)求等比數(shù)列 的通項公式;
(2)若數(shù)列 滿足 ,求數(shù)列 的前 項和 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)().

(Ⅰ)當(dāng)時,解不等式;

(Ⅱ)證明:方程最少有1個解,最多有2個解,并求該方程有2個解時實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案