【題目】小王在年初用50萬元購買一輛大貨車,第一年因繳納各種費(fèi)用需支出6萬元,從第二年起,每年都比上一年增加支出2萬元,假定該車每年的運(yùn)輸收入均為25萬元.小王在該車運(yùn)輸累計收入超過總支出后,考慮將大貨車作為二手車出售,若該車在第x年年底出售,其銷售價格為25-x萬元(國家規(guī)定大貨車的報廢年限為10年).
(1)大貨車運(yùn)輸?shù)降趲啄昴甑祝撥囘\(yùn)輸累計收入超過總支出?
(2)在第幾年年底將大貨車出售,能使小王獲得的年平均利潤最大(利潤=累計收入+銷售收入-總支出)?
【答案】(1)3(2)5
【解析】試題分析:
(1)求出第年年底,該車運(yùn)輸累計收入與總支出的差,令其大于0,即可得到結(jié)論;
(2)利用利潤=累計收入+銷售收入-總支出,可得平均利潤,利用基本不等式,可得結(jié)論.
試題解析:
(1)設(shè)大貨車運(yùn)輸?shù)降?/span>年年底,該車運(yùn)輸累計收入與總支出的差為萬元,
則
由,可得
∵,故從第3年,該車運(yùn)輸累計收入超過總支出;
(2)∵利潤=累計收入+銷售收入總支出,
∴二手車出售后,小張的年平均利潤為,
當(dāng)且僅當(dāng)時,等號成立
∴小張應(yīng)當(dāng)在第5年將大貨車出售,能使小張獲得的年平均利潤最大。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=x2+mx+n(m、n∈R)的兩個零點(diǎn)分別在(0,1)與(1,2)內(nèi),則(m+1)2+(n﹣2)2的取值范圍是( )
A.
B.
C.[2,5]
D.(2,5)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱柱ABCD﹣A1B1C1D1中,底面ABCD是邊長為3的正方形,側(cè)棱AA1長為4,且AA1與A1B1 , A1D1的夾角都是60°,則AC1的長等于( )
A.10
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)與函數(shù)在點(diǎn)處有共同的切線,求的值;
(2)證明: ;
(3)若不等式對所有, 都成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù)f(x)=(﹣2m2+m+2)xm+1為偶函數(shù).
(1)求f(x)的解析式;
(2)若函數(shù)y=f(x)﹣2(a﹣1)x+1在區(qū)間(2,3)上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)的零點(diǎn)與g(x)=4x+2x﹣2的零點(diǎn)之差的絕對值不超過0.25,則f(x)可以是( )
A.f(x)=4x﹣1
B.f(x)=(x﹣1)2
C.f(x)=ex﹣1
D.f(x)=ln(x﹣ )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|lgx|.若a≠b且,f(a)=f(b),則a+b的取值范圍是( )
A.(1,+∞)
B.[1,+∞)
C.(2,+∞)
D.[2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)請根據(jù)對數(shù)函數(shù)來指出函數(shù)的基本性質(zhì)(結(jié)論不要求證明),并畫出圖像;
(2)拉普拉斯稱贊對數(shù)是一項“使天文學(xué)家壽命倍増”的發(fā)明.對數(shù)可以將大數(shù)之間的乘除運(yùn)算簡化為加減運(yùn)算,請證明: ;
(3)2017年5月23日至27日,圍棋世界冠軍柯潔與DeepMind公司開發(fā)的程序“AlphaGo”進(jìn)行三局人機(jī)對弈,以復(fù)雜的圍棋來測試人工智能.圍棋復(fù)雜度的上限約為,而根據(jù)有關(guān)資料,可觀測宇宙中普通物質(zhì)的原子總數(shù)約為.甲、乙兩個同學(xué)都估算了的近似值,甲認(rèn)為是,乙認(rèn)為是.現(xiàn)有兩種定義:
①若實(shí)數(shù)滿足,則稱比接近;
②若實(shí)數(shù),且,滿足,則稱比接近;請你任選取其中一種定義來判斷哪個同學(xué)的近似值更接近,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),且f(x)+g(x)=3x .
(1)求 f(x),g(x);
(2)若對于任意實(shí)數(shù)t∈[0,1],不等式f(2t)+ag(t)<0恒成立,求實(shí)數(shù)a的取值范圍;
(3)若存在m∈[﹣2,﹣1],使得不等式af(m)+g(2m)<0成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com