不等式|x+3|-|x-1|≤a2-3a對(duì)任意實(shí)數(shù)x恒成立,則正實(shí)數(shù)a的取值范圍
 
考點(diǎn):絕對(duì)值不等式的解法
專題:不等式的解法及應(yīng)用
分析:先去絕對(duì)值符號(hào)確定|x+3|-|x-1|的取值范圍,然后讓a2-3a大于它的最大值即可.
解答: 解:令y=|x+3|-|x-1|,
當(dāng)x>1時(shí),y=x+3-x+1=4;
當(dāng)x<-3時(shí),y=-x-3+x-1=-4;
當(dāng)-3≤x≤1時(shí),y=x+3+x-1=2x+2,
∴-4≤y≤4;
∴要使得不等式|x+3|-|x-1|≤a2-3a對(duì)任意實(shí)數(shù)x恒成立
只要a2-3a≥4即可
∴a≤-1或a≥4,
∴正實(shí)數(shù)a的取值范圍a≥4.
故答案為:[4,+∞).
點(diǎn)評(píng):本題主要考查不等式恒成立問題.大于一個(gè)函數(shù)式只需要大于它的最大值即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的各項(xiàng)均為正數(shù),前n項(xiàng)和為Sn,且Sn=
an(an+1)
2
(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=-
2Sn
(n+1)•2n
,Tn=b1+b2+…+bn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從1,2,3,4中隨機(jī)取出兩個(gè)不同的數(shù),則其和為奇數(shù)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用“五點(diǎn)作圖法”在已給坐標(biāo)系中畫出函數(shù)y=2sin(
1
3
x-
π
6
)一個(gè)周期內(nèi)的簡(jiǎn)圖,并指出該函數(shù)圖象是由函數(shù)y=sinx的圖象進(jìn)行怎樣的變換而得到的?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)公式為an=25-n,數(shù)列{bn}的通項(xiàng)公式為bn=n+k,設(shè)cn=
bn,anbn
an,anbn
若在數(shù)列{cn}中,c5≤cn對(duì)任意n∈N*恒成立,則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸入n=100,則輸出的S=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(
x
+
a
x
)6
(a>0)的展開式中含常數(shù)項(xiàng)的系數(shù)是60,則
a
0
sinxdx的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文)從[0,3]中隨機(jī)取一個(gè)數(shù)a,則事件“不等式|x+1|+|x-1|<a有解”發(fā)生的概率為(  )
A、
5
6
B、
2
3
C、
1
6
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)無窮數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和為Sn(n∈N*),且3tSn-(2t+3)Sn-1=3t(n∈N*,n≥2)(t是與n無關(guān)的正實(shí)數(shù))
(1)求證:數(shù)列{an}(n∈N*)為等比數(shù)列;
(2)記數(shù)列{an}的公比為f(t),數(shù)列{bn}滿足b1=1,bn=f(
1
bn-1
)(n∈N*,n≥2),設(shè)cn=b2n-1b2n-b2nb2n+1,求數(shù)列{cn}的前n項(xiàng)和Tn
(3)若(2)中數(shù)列{cn}的前n項(xiàng)和Tn,當(dāng)n∈N*時(shí),不等式Tn≤a恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案