【題目】如圖,在三棱柱, 平面 , 的中點, 是等腰三角形, 的中點 上一點.

)若證明 平面;

求直線與平面所成角的余弦值.

【答案】(1) 見解析(2)

【解析】試題分析:)以為原點,以所在的直線分別為軸, 軸, 軸建立空間直角坐標系,利用向量法能證明平面
(Ⅰ)知平面的一個法向量為, ,由此利用向量法能求出直線與平面所成角的余弦值.

試題解析:

證明:因為平面,又,

所以以為原點,以所在的直線分別為軸, 軸, 軸建立空間直角坐標系,如圖所示.

,又是等腰三角形,

所以 , ,

所以, .

設平面的法向量為

,即,可得,

,則,所以是平面的一個法向量.

, 的中點,所以, ,所以,

由于,所以,

平面,所以平面.

(Ⅱ)由(Ⅰ)知平面的一個法向量為, , ,設直線與平面所成角的大小為,則,

,所以,即直線與平面所成角的余弦值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖放置的邊長為2的正三角形ABC沿x軸滾動,記滾動過程中頂點A的橫、縱坐標分別為,且在映射作用下的象,則下列說法中:

映射的值域是;

映射不是一個函數(shù);

映射是函數(shù),且是偶函數(shù);

映射是函數(shù),且單增區(qū)間為,

其中正確說法的序號是___________.

說明:“正三角形ABC沿x軸滾動包括沿x軸正方向和沿x軸負方向滾動.沿x軸正方向滾動指的是先以頂點B為中心順時針旋轉(zhuǎn),當頂點C落在x軸上時,再以頂點C為中心順時針旋轉(zhuǎn),如此繼續(xù).類似地,正三角形ABC可以沿x軸負方向滾動.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .若gx)存在2個零點,則a的取值范圍是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】當|a|≤1,|x|≤1時,關(guān)于x的不等式|x2﹣ax﹣a2|≤m恒成立,則實數(shù)m的取值范圍是(
A.[ ,+∞)
B.[ ,+∞)
C.[ ,+∞)
D.[ ,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某家庭進行理財投資,根據(jù)長期收益率市場預測,投資債券等穩(wěn)健型產(chǎn)品的一年收益與投資額成正比,其關(guān)系如圖(1);投資股票等風險型產(chǎn)品的一年收益與投資額的算術(shù)平方根成正比,其關(guān)系如圖(2).(注:收益與投資額單位:萬元

(1)分別寫出兩種產(chǎn)品的一年收益與投資額的函數(shù)關(guān)系;

(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,問:怎么分配資金能使一年的投資獲得最大收益,其最大收益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】不等式的解集為,則不等式的解集為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖為橢圓C:的左、右焦點,D,E是橢圓的兩個頂點,橢圓的離心率的面積為.若點在橢圓C上,則點稱為點M的一個橢圓,直線與橢圓交于A,B兩點,A,B兩點的橢圓分別為P,Q.

(1)求橢圓C的標準方程;

(2)問是否存在過左焦點的直線,使得以PQ為直徑的圓經(jīng)過坐標原點?若存在,求出該直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在已知空間四邊形ABCD中,E、F分別是棱AB、CD的中點,若2EF=BC,且異面直線EF與BC所成的角為60°,則AD與BC所成的角是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校要召開學生代表大會,規(guī)定各班每10人推選一名代表,當各班人數(shù)除以10的余數(shù)大于6時再增選一名代表.那么,各班可推選代表人數(shù)y與該班人數(shù)x之間的函數(shù)關(guān)系用取整函數(shù)y=[x]([x]表示不大于x的最大整數(shù))可以表示為(  )

A. y B. y C. y D. y

查看答案和解析>>

同步練習冊答案