精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在正三棱柱 ABCA1B1C1 中,AB 1 ,若二面角 C AB C1 的大小為 60°,則點 C 到平面 ABC1 的距離為(

A.B.C.D.

【答案】A

【解析】

CCDAB,D為垂足,連接C1D,則C1DAB,∠C1DC60°,且AB⊥平面C1DC,所以平面ABC1⊥平面C1DC,平面ABC1∩平面C1DCC1D,所以過CCEC1D,則CE為點C到平面ABC1的距離.

解:如圖,在正三棱柱ABCA1B1C1中,AB1.若二面角CABC1的大小為60°,

CCDABD為垂足,連接C1D,則C1DAB,∠C1DC60°,CD,

C1DCC1,在△CC1D中,過CCEC1D,

CE為點C到平面ABC1的距離,CE,

所以點C到平面ABC1的距離為

故選:A

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某中學2018年的高考考生人數是2015年高考考生人數的倍,為了更好地對比該校考生的升學情況,統(tǒng)計了該校2015年和2018年的高考情況,得到如圖柱狀圖:

則下列結論正確的是  

A. 與2015年相比,2018年一本達線人數減少

B. 與2015年相比,2018年二本達線人數增加了

C. 2015年與2018年藝體達線人數相同

D. 與2015年相比,2018年不上線的人數有所增加

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在多面體中,是等邊三角形,是等腰直角三角形, ,平面平面,平面.

(1) 求證:;

(2) 若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若三次函數)的圖象上存在相互平行且距離為的兩條切線,則稱這兩條切線為一組“距離為的友好切線組”.已知,則函數的圖象上“距離為4的友好切線組”有( )組?

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a、bc的三邊長,直線的方程為,圓

1)若為直角三角形,c為斜邊長,且直線與圓M相切.求c的值;

2)已知為坐標原點,點,,,平行于ON的直線h與圓M相交于R兩點,且,求直線h的方程:

3)若為正三角形,對于直線上任意一點P,在圓上總存在一點,使得線段的長度為整數,求c的取值范圍;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費(單位:萬元)對年銷售量(單位:噸)和年利潤(單位:萬元)的影響.對近六年的年宣傳費和年銷售量)的數據作了初步統(tǒng)計,得到如下數據:

年份

年宣傳費(萬元)

年銷售量(噸)

經電腦模擬,發(fā)現(xiàn)年宣傳費(萬元)與年銷售量(噸)之間近似滿足關系式).對上述數據作了初步處理,得到相關的值如表:

1)根據所給數據,求關于的回歸方程;

2)已知這種產品的年利潤,的關系為若想在年達到年利潤最大,請預測年的宣傳費用是多少萬元?

附:對于一組數據,…,,其回歸直線中的斜率和截距的最小二乘估計分別為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,,其中為自然對數的底數,若存在實數使得,則實數的值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】四棱錐的底面為直角梯形,,,為正三角形.

(1)點為棱上一點,若平面,,求實數的值;

(2)求點B到平面SAD的距離.

【答案】(1);(2)

【解析】試題分析:(1)由平面,可證,進而證得四邊形為平行四邊形,根據,可得;

(2)利用等體積法可求點到平面的距離.

試題解析:((1)因為平面SDM,

平面ABCD,

平面SDM 平面ABCD=DM,

所以,

因為,所以四邊形BCDM為平行四邊形,又,所以M為AB的中點.

因為,

.

(2)因為 ,

所以平面,

又因為平面,

所以平面平面,

平面平面,

在平面內過點直線于點,則平面,

中,

因為,所以,

又由題知

所以,

由已知求得,所以,

連接BD,則

又求得的面積為,

所以由點B 到平面的距離為.

型】解答
束】
19

【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎勵1元;乙方案:底薪140元,每日前55單沒有獎勵,超過55單的部分每單獎勵12元.

(1)請分別求出甲、乙兩種薪酬方案中日薪(單位:元)與送貨單數的函數關系式;

(2)根據該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數滿足以下條件:在這100天中的派送量指標滿足如圖所示的直方圖,其中當某天的派送量指標在 時,日平均派送量為單.

若將頻率視為概率,回答下列問題:

①根據以上數據,設每名派送員的日薪為(單位:元),試分別求出甲、乙兩種方案的日薪的分布列,數學期望及方差;

②結合①中的數據,根據統(tǒng)計學的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說明你的理由.

(參考數據: , , , , , , , ,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知集合A={1,2,3,4,5,6,7,8,9),在集合A中任取三個元素,分別作為一個三位數的個位數,十位數和百位數,記這個三位數為a,現(xiàn)將組成a的三個數字按從小到大排成的三位數記為Ia),按從大到小排成的三位數記為Da)(例如a=219,則Ia)=129,Da)=921),閱讀如圖所示的程序框圖,運行相應的程序,任意輸入一個a,則輸出b的值為( )

A. 792 B. 693 C. 594 D. 495

查看答案和解析>>

同步練習冊答案