【題目】如圖,在空間幾何體中,平面平面,都是邊長(zhǎng)為2的等邊三角形,,點(diǎn)在平面上的射影在的平分線上,已知和平面所成角為.

(1)求證:平面;

(2)求二面角的余弦值.

【答案】(1)見解析;(2).

【解析】分析:(1)取中點(diǎn),連接,先證明,再證明平面. (2)由已知,兩兩互相垂直,故以軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,利用向量法求二面角的余弦值.

詳解:(1)證明:由題意知,都是邊長(zhǎng)為2的等邊三角形,取中點(diǎn),連接,則,.

又∵平面平面,平面,作平面,

那么,根據(jù)題意,點(diǎn)落在上,

和平面所成角為,∴.

,∴,

∴四邊形是平行四邊形,∴,∴平面,平面

平面.

(2)由已知,兩兩互相垂直,故以軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,得,.

,,設(shè)平面的一個(gè)法向量為.

,∴.,∴取,

又∵平面的一個(gè)法向量,∴.

又由圖知,所求二面角的平面角為銳角,∴ 二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量(單位:千克)與銷售價(jià)格(單位:元/千克)滿足,其中為常數(shù).已知銷售價(jià)格為7/千克時(shí),每日可售出該商品11千克.

1)求的值;

2)若該商品成本為5/千克,試確定銷售價(jià)格值,使商場(chǎng)每日銷售該商品所獲利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】201829-25,23屆冬奧會(huì)在韓國(guó)平昌舉行.4年后,24屆冬奧會(huì)將在中國(guó)北京和張家口舉行.為了宣傳冬奧會(huì),某大學(xué)在平昌冬奧會(huì)開幕后的第二天,從全校學(xué)生中隨機(jī)抽取了120名學(xué)生,對(duì)是否收看平昌冬奧會(huì)開幕式情況進(jìn)行了問(wèn)卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:

(Ⅰ)根據(jù)上表說(shuō)明,能否有的把握認(rèn)為收看開幕式與性別有關(guān)?

(Ⅱ)現(xiàn)從參與問(wèn)卷調(diào)查且收看了開幕式的學(xué)生中,采用按性別分層抽樣的方法選取12人參加2022年北京冬奧會(huì)志愿者宣傳活動(dòng).

(ⅰ)問(wèn)男、女學(xué)生各選取了多少人?

(ⅱ)若從這12人中隨機(jī)選取3人到校廣播站開展冬奧會(huì)及冰雪項(xiàng)目的宣傳介紹,設(shè)選取的3人中女生人數(shù)為,寫出的分布列,并求.

收看

沒收看

男生

60

20

女生

20

20

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的長(zhǎng)軸長(zhǎng)為,且橢圓與圓 的公共弦長(zhǎng)為.

(1)求橢圓的方程.

(2)經(jīng)過(guò)原點(diǎn)作直線(不與坐標(biāo)軸重合)交橢圓于, 兩點(diǎn), 軸于點(diǎn),點(diǎn)在橢圓上,且,求證: , 三點(diǎn)共線..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為拋物線的焦點(diǎn),過(guò)的動(dòng)直線交拋物線,兩點(diǎn).當(dāng)直線與軸垂直時(shí),

(1)求拋物線的方程;

(2)設(shè)直線的斜率為1且與拋物線的準(zhǔn)線相交于點(diǎn),拋物線上存在點(diǎn)使得直線,的斜率成等差數(shù)列,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:

甲說(shuō):“作品獲得一等獎(jiǎng)”;

乙說(shuō):“作品獲得一等獎(jiǎng)”;

丙說(shuō):“, 兩項(xiàng)作品未獲得一等獎(jiǎng)”;

丁說(shuō):“作品獲得一等獎(jiǎng)”.

若這四位同學(xué)只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,分別是其左、右焦點(diǎn),且過(guò)點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若在直線上任取一點(diǎn),從點(diǎn)的外接圓引一條切線,切點(diǎn)為.問(wèn)是否存在點(diǎn),恒有?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖1所示,在邊長(zhǎng)為12的正方形,中,,且,分別交于點(diǎn),將該正方形沿,折疊,使得重合,構(gòu)成如圖2 所示的三棱柱,在該三棱柱底邊上有一點(diǎn),滿足; 請(qǐng)?jiān)趫D2 中解決下列問(wèn)題:

(I)求證:當(dāng)時(shí),//平面

(Ⅱ)若直線與平面所成角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知傾斜角為的直線經(jīng)過(guò)拋物線的焦點(diǎn),與拋物線相交于、兩點(diǎn),且.

Ⅰ)求拋物線的方程;

Ⅱ)過(guò)點(diǎn)的兩條直線分別交拋物線于點(diǎn)、,線段的中點(diǎn)分別為.如果直線的斜率之積等于1,求證:直線經(jīng)過(guò)一定點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案