【題目】201829-25,23屆冬奧會在韓國平昌舉行.4年后24屆冬奧會將在中國北京和張家口舉行.為了宣傳冬奧會,某大學在平昌冬奧會開幕后的第二天,從全校學生中隨機抽取了120名學生,對是否收看平昌冬奧會開幕式情況進行了問卷調(diào)查,統(tǒng)計數(shù)據(jù)如下:

(Ⅰ)根據(jù)上表說明,能否有的把握認為,收看開幕式與性別有關?

(Ⅱ)現(xiàn)從參與問卷調(diào)查且收看了開幕式的學生中,采用按性別分層抽樣的方法選取12人參加2022年北京冬奧會志愿者宣傳活動.

(ⅰ)問男、女學生各選取了多少人?

(ⅱ)若從這12人中隨機選取3人到校廣播站開展冬奧會及冰雪項目的宣傳介紹,設選取的3人中女生人數(shù)為,寫出的分布列,并求.

收看

沒收看

男生

60

20

女生

20

20

附:,其中.

【答案】(1)見解析;(2)(i) 男生有9人,女生有3人.(ii)見解析.

【解析】分析::(Ⅰ)因為,所以有的把握認為,收看開幕式與性別有關;(Ⅱ)(ⅰ)根據(jù)分層抽樣方法得,男生人,女生; (ⅱ)的可能取值有,利用組合知識,由古典概型概率公式求出各隨機變量的概率,從而可得分布列,利用期望公式可得期望.

詳解 (Ⅰ)因為,

所以有的把握認為,收看開幕式與性別有關.

(Ⅱ)(ⅰ)根據(jù)分層抽樣方法得,男生人,女生人,

所以選取的12人中,男生有9人,女生有3人.

(ⅱ)由題意可知,的可能取值有0,1,2,3.

,

,

的分布列是:

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】哈師大附中高三學年統(tǒng)計甲、乙兩個班級一模數(shù)學分數(shù)(滿分150分),每個班級20名同學,現(xiàn)有甲、乙兩班本次考試數(shù)學分數(shù)如下列莖葉圖所示:

(I)根據(jù)基葉圖求甲、乙兩班同學數(shù)學分數(shù)的中位數(shù),并將乙班同學的分數(shù)的頻率分布直方圖填充完整;

(Ⅱ)根據(jù)基葉圖比較在一?荚囍,甲、乙兩班同學數(shù)學分數(shù)的平均水平和分數(shù)的分散程度(不要求計算出具體值,給出結(jié)論即可)

(Ⅲ)若規(guī)定分數(shù)在的成績?yōu)榱己,分?shù)在的成績?yōu)閮?yōu)秀,現(xiàn)從甲、乙兩班成績?yōu)閮?yōu)秀的同學中,按照各班成績?yōu)閮?yōu)秀的同學人數(shù)占兩班總的優(yōu)秀人數(shù)的比例分層抽樣,共選出12位同學參加數(shù)學提優(yōu)培訓,求這12位同學中恰含甲、乙兩班所有140分以上的同學的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知偶函數(shù)上單調(diào)遞增,則

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,為正三角形,為線段的中點.

(Ⅰ)求證:平面;

(Ⅱ)若,求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】記焦點在同一條軸上且離心率相同的橢圓為“相似橢圓”.已知橢圓,以橢圓的焦點為頂點作相似橢圓.

(Ⅰ)求橢圓的方程;

(Ⅱ)設直線與橢圓交于兩點,且與橢圓僅有一個公共點,試判斷的面積是否為定值(為坐標原點)?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,其準線與軸交于點,過點的直線與拋物線交于,兩點.

(1)求拋物線的方程及的值;

(2)若點關于軸的對稱點為,證明:存在實數(shù),使得.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)在區(qū)間內(nèi)存在極值點,且恰有唯一整數(shù)解使得,則的取值范圍是( )(其中為自然對數(shù)的底數(shù),

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在空間幾何體中,平面平面,都是邊長為2的等邊三角形,,點在平面上的射影在的平分線上,已知和平面所成角為.

(1)求證:平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中, 相交于點,點在線段上,,且平面

(1)求實數(shù)的值;

(2)若, 求點到平面的距離.

查看答案和解析>>

同步練習冊答案