【題目】正方體的直觀圖如圖所示:
(1)判斷平面與平面的位置關(guān)系,并證明你的結(jié)論.
(2)證明:直線平面.
(3)若,求點到面的距離.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中是實數(shù)。設(shè), 為該函數(shù)圖象上的兩點,且,若函數(shù)的圖象在點處的切線重合,則的取值范圍為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】4月23日是“世界讀書日”,某中學開展了一系列的讀書教育活動.學校為了解高三學生課外閱讀情況,采用分層抽樣的方法從高三某班甲、乙、丙、丁四個讀書小組(每名學生只能參加一個讀書小組)學生抽取12名學生參加問卷調(diào)查.各組人數(shù)統(tǒng)計如下:
小組 | 甲 | 乙 | 丙 | 丁 |
人數(shù) | 12 | 9 | 6 | 9 |
(1)從參加問卷調(diào)查的12名學生中隨機抽取2人,求這2人來自同一個小組的概率;
(2)從已抽取的甲、丙兩個小組的學生中隨機抽取2人,用表示抽得甲組學生的人數(shù),求隨機變量的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)的部分圖象如圖所示,點A,B,C在圖象上,,,并且軸
(1)求和的值及點B的坐標;
(2)若,且,求的值;
(3)將函數(shù)的圖象上各點的縱坐標變?yōu)樵瓉淼?/span>倍,橫坐標不變,再將所得圖象各點的橫坐標變?yōu)樵瓉淼?/span>倍,縱坐標不變,最后將所得圖象向右平移個單位,得到的圖象,若關(guān)于x的方程在區(qū)間上有兩個不同解,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓.
(1)若直線過點且被圓截得的弦長為2,求直線的方程;
(2)從圓外一點向圓引一條切線,切點為為坐標原點,滿足,求點的軌跡方程及的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)全集U=R,集合A={x|2x-1≥1},B={x|x2-4x-5<0}.
(Ⅰ)求A∩B,(UA)∪(UB);
(Ⅱ)設(shè)集合C={x|m+1<x<2m-1},若B∩C=C,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知、是異面直線,給出下列結(jié)論:
①一定存在平面,使直線平面,直線平面;
②一定存在平面,使直線平面,直線平面;
③一定存在無數(shù)個平面,使直線與平面交于一個定點,且直線平面.
則所有正確結(jié)論的序號為( )
A.①②B.②C.②③D.③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年9月24日,阿貝爾獎和菲爾茲獎雙料得主、英國著名數(shù)學家阿蒂亞爵士宣布自己證明了黎曼猜想,這一事件引起了數(shù)學屆的震動。在1859年的時候,德國數(shù)學家黎曼向科學院提交了題目為《論小于某值的素數(shù)個數(shù)》的論文并提出了一個命題,也就是著名的黎曼猜想。在此之前,著名數(shù)學家歐拉也曾研究過這個問題,并得到小于數(shù)字的素數(shù)個數(shù)大約可以表示為的結(jié)論。若根據(jù)歐拉得出的結(jié)論,估計1000以內(nèi)的素數(shù)的個數(shù)為_________(素數(shù)即質(zhì)數(shù),,計算結(jié)果取整數(shù))
A. 768 B. 144 C. 767 D. 145
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com