【題目】某玩具所需成本費(fèi)用為PP=1 000+5xx2,而每套售出的價(jià)格為Q,其中Q(x)=a (a,bR),

(1)問(wèn):玩具廠生產(chǎn)多少套時(shí),使得每套所需成本費(fèi)用最少?

(2)若生產(chǎn)出的玩具能全部售出,且當(dāng)產(chǎn)量為150套時(shí)利潤(rùn)最大,此時(shí)每套價(jià)格為30,a,b的值.(利潤(rùn)=銷售收入-成本).

【答案】(1)該玩具廠生產(chǎn)100套時(shí)每套所需成本最少.(2)a=25,b=30.

【解析】

(1)先建立每套所需成本費(fèi)用函數(shù)關(guān)系式,再根據(jù)基本不等式求最值,(2)先根據(jù)利潤(rùn)=銷售收入-成本建立利潤(rùn)函數(shù)關(guān)系式,再根據(jù)二次函數(shù)性質(zhì)確定開(kāi)口方向、對(duì)稱軸位置以及最大值取法,解方程與不等式組可得a,b的值.

解:(1)每套玩具所需成本費(fèi)用為

x+5≥2+5=25,

當(dāng)x,即x=100時(shí)等號(hào)成立,

故該玩具廠生產(chǎn)100套時(shí)每套所需成本最少.

(2)設(shè)售出利潤(rùn)為w,則wx·Q(x)-P

x

x2+(a-5)x-1 000,

由題意得解得a=25,b=30.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)是定義在上的單調(diào)函數(shù),且對(duì)于任意正數(shù),已知,若一個(gè)各項(xiàng)均為正數(shù)的數(shù)列滿足,其中是數(shù)列的前項(xiàng)和,則數(shù)列中第18項(xiàng)

A. B. 9 C. 18 D. 36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線 ,和兩點(diǎn)0,1),-1,0),給出如下結(jié)論:

①不論為何值時(shí), 都互相垂直;

②當(dāng)變化時(shí), 分別經(jīng)過(guò)定點(diǎn)A0,1)和B-1,0);

③不論為何值時(shí), 都關(guān)于直線對(duì)稱;

④如果交于點(diǎn),則的最大值是1;

其中,所有正確的結(jié)論的個(gè)數(shù)是(

A. 1 B. 2 C. 3 D. 4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)列{an}中,前n項(xiàng)和為Sn , 且Sn= ,數(shù)列{bn}的前n項(xiàng)和為T(mén)n , 且bn=
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在m,n∈N* , 使得Tn=am , 若存在,求出所有滿足題意的m,n,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)離心率為 的橢圓E: + =1(a>b>0)的左、右焦點(diǎn)為F1 , F2 , 點(diǎn)P是E上一點(diǎn),PF1⊥PF2 , △PF1F2內(nèi)切圓的半徑為 ﹣1.
(1)求E的方程;
(2)矩形ABCD的兩頂點(diǎn)C、D在直線y=x+2,A、B在橢圓E上,若矩形ABCD的周長(zhǎng)為 ,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)設(shè)

①若,求函數(shù)的零點(diǎn);

②若函數(shù)存在零點(diǎn),求的取值范圍.

(2)設(shè),若對(duì)任意恒成立,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司購(gòu)買(mǎi)了A,B,C三種不同品牌的電動(dòng)智能送風(fēng)口罩.為了解三種品牌口罩的電池性能,現(xiàn)采用分層抽樣的方法,從三種品牌的口罩中抽出25臺(tái),測(cè)試它們一次完全充電后的連續(xù)待機(jī)時(shí)長(zhǎng),統(tǒng)計(jì)結(jié)果如下(單位:小時(shí)):

A

4

4

4.5

5

5.5

6

6

B

4.5

5

6

6.5

6.5

7

7

7.5

C

5

5

5.5

6

6

7

7

7.5

8

8


(1)已知該公司購(gòu)買(mǎi)的C品牌電動(dòng)智能送風(fēng)口罩比B品牌多200臺(tái),求該公司購(gòu)買(mǎi)的B品牌電動(dòng)智能送風(fēng)口罩的數(shù)量;
(2)從A品牌和B品牌抽出的電動(dòng)智能送風(fēng)口罩中,各隨機(jī)選取一臺(tái),求A品牌待機(jī)時(shí)長(zhǎng)高于B品牌的概率;
(3)再?gòu)腁,B,C三種不同品牌的電動(dòng)智能送風(fēng)口罩中各隨機(jī)抽取一臺(tái),它們的待機(jī)時(shí)長(zhǎng)分別是a,b,c(單位:小時(shí)).這3個(gè)新數(shù)據(jù)與表格中的數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記為μ1 , 表格中數(shù)據(jù)的平均數(shù)記為μ0 . 若μ0≤μ1 , 寫(xiě)出a+b+c的最小值(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a∈R,若關(guān)于x的方程x2+x+|a﹣ |+|a|=0有實(shí)根,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線x2=ay(a>0)的準(zhǔn)線l與y軸交于點(diǎn)P,若l繞點(diǎn)P以每秒 弧度的角速度按逆時(shí)針?lè)较蛐D(zhuǎn)t秒鐘后,恰與拋物線第一次相切,則t等于(
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案