【題目】某四棱錐的三視圖如圖所示,該四棱錐的四個側(cè)面的面積中最大的是( ).

A. B. C. D.

【答案】C

【解析】由三視圖得幾何體是如圖所示四棱錐

其中 分別是 中點, 平面,

底面是矩形, , 是等腰三角形,

, ,

, ,

∴四棱錐的四個側(cè)面中面積最大的是

故選

點睛:思考三視圖還原空間幾何體首先應(yīng)深刻理解三視圖之間的關(guān)系,遵循“長對正,高平齊,寬相等”的基本原則,其內(nèi)涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側(cè)視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進行調(diào)整.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐,底面為等腰梯形且底面與側(cè)面垂直, , 分別為線段的中點 , , .

1證明: 平面;

2與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角中,垂心關(guān)于邊、、的對稱點分別為、,關(guān)于邊、的中點、的對稱點分別為、、.證明:

(1)、、、六點共圓;

(2);

(3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當(dāng)x0時,f(x)=x+1,那么不等式2f(x)﹣10的解集是_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點為拋物線上存在一點到焦點的距離等于3.

(1)求拋物線的方程;

(2)過點的直線與拋物線相交于兩點(兩點在軸上方),點關(guān)于軸的對稱點為,的外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

)求的值.

)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1) 判斷函數(shù)的單調(diào)性并給出證明;

(2)若存在實數(shù)使函數(shù)是奇函數(shù),求;

(3)對于(2)中的,若,當(dāng)時恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知圓C1:x2+y2=4,圓C2:(x﹣2)2+y2=4.
(1)在以O(shè)為極點,x軸正半軸為極軸的極坐標(biāo)系中,分別求圓C1與圓C2的極坐標(biāo)方程及兩圓交點的極坐標(biāo);
(2)求圓C1與圓C2的公共弦的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司試銷一種成本單價為500元的新產(chǎn)品,規(guī)定試銷時銷售單價不低于成本單價,又不高于800元.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y()與銷售單價x()之間的關(guān)系可近似看作一次函數(shù)ykxb(k≠0),函數(shù)圖象如圖所示.

(1)根據(jù)圖象,求一次函數(shù)ykxb(k≠0)的表達式;

(2)設(shè)公司獲得的毛利潤(毛利潤=銷售總價-成本總價)S元.試問銷售單價定為多少時,該公司可獲得最大毛利潤?最大毛利潤是多少?此時的銷售量是多少?

查看答案和解析>>

同步練習(xí)冊答案