某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、4-
3
B、4-
3
C、6-
3
D、8-
3
考點:由三視圖求面積、體積
專題:計算題,空間位置關系與距離
分析:幾何體是正四棱柱挖去一個半球,由三視圖判斷正四棱柱的底面邊長及高,判斷挖去半球的半徑,把數(shù)據(jù)代入半球與棱柱的體積公式計算.
解答: 解:由三視圖知:幾何體是正四棱柱挖去一個半球,
正四棱柱的底面邊長與半球的直徑為2,正四棱柱的高為1,
∴幾何體的體積V=22×1-
2
3
×π×13=4-
2
3
π.
故選:A.
點評:本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的形狀及數(shù)據(jù)所對應的幾何量是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在一圓形水域內有一片“枯葉”,它的邊界由曲線C1:f(x)=cosx與曲線C2:g(x)=
2
π
x-sinx圍成,圓的方程為:x2+y2=
π2
4
,假設“枯葉”在水中保持靜止,現(xiàn)有一小孩向水中投擲一顆沙粒,則此沙粒恰好砸中“枯葉”的概率為(  )
A、
2
π2
B、
8
π3
C、
8
π2
D、
4
π3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若i(i是虛數(shù)單位)是關于x的方程x2+px+q=0(p,q∈R)的一個根,則p-q=( 。
A、-1B、0C、-2D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在曲線y=x2的切線的傾斜角為
4
的點為(  )
A、(0,0)
B、(
1
2
1
4
C、(-
1
2
,
1
4
D、(
1
2
,
1
4
)或(-
1
2
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-6x2+9x-abc,其中a<b<c,且f(a)=f(b)=f(c)=0,現(xiàn)給出如下結論:
①f(0)f(1)>0;
②f(0)f(1)<0;
③f(0)f(3)>0;
④f(0)f(3)<0.
其中正確結論的個數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在密碼理論中,“一次一密”的密碼體系是理論上安全性最高的.某部隊執(zhí)行特殊任務使用四個不同的口令a,b,c,d,每次只能使用其中的一種,且每次都是從上次未使用的三個口令中等可能地隨機選用一種.設第1次使用a口令,那么第5次也使用a口令的概率是( 。
A、
7
27
B、
61
243
C、
1
108
D、
1
243

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

調查表明,酒后駕駛是導致交通事故的主要原因,交通法規(guī)規(guī)定:駕駛員在駕駛機動車時血液中酒精含量不得超過0.02mg/mL.如果某人喝了少量酒后,血液中酒精含量將迅速上升到0.3mg/mL,在停止喝酒后,血液中酒精含量就以每小時50%的速度減小,問他至少要經(jīng)過幾小時才可以加強機動車(精確到小時)(  )
A、1小時B、2小時
C、4小時D、6小時

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(a+1)lnx+ax2+1,且a≤-2.
證明:對任意的x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

現(xiàn)從某100件中藥材中隨機抽取10件,以這10件中藥材的重量(單位:克)作為樣本,樣本數(shù)據(jù)的莖葉圖如圖,
(Ⅰ)求樣本數(shù)據(jù)的中位數(shù)、平均數(shù),并估計這100件中藥材的總重量;
(Ⅱ)記重量在15克以上的中藥材為優(yōu)等品,在該樣本的優(yōu)等品中,隨機抽取2件,求這2件中藥材的重量之差不超過2克的概率.

查看答案和解析>>

同步練習冊答案