設(shè)點(diǎn)在曲線(xiàn)上,點(diǎn)在曲線(xiàn)上,則的最小值等于    

試題分析:點(diǎn)在曲線(xiàn)上,點(diǎn)在曲線(xiàn)上,而曲線(xiàn)與曲線(xiàn)互為反函數(shù),圖象關(guān)于直線(xiàn)對(duì)稱(chēng),所以的最小值等于曲線(xiàn)上的點(diǎn)到直線(xiàn)的距離的最小值乘以2即可,設(shè),所以點(diǎn)到直線(xiàn)的距離所以的最小值等于.
點(diǎn)評(píng):解決本小題的關(guān)鍵是分析出兩個(gè)函數(shù)互為反函數(shù),圖象關(guān)于對(duì)稱(chēng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分12分)如圖,在平面直坐標(biāo)系中,已知橢圓,經(jīng)過(guò)點(diǎn),其中e為橢圓的離心率.且橢圓與直線(xiàn) 有且只有一個(gè)交點(diǎn)。

(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)不經(jīng)過(guò)原點(diǎn)的直線(xiàn)與橢圓相交與A,B兩點(diǎn),第一象限內(nèi)的點(diǎn)在橢圓上,直線(xiàn)平分線(xiàn)段,求:當(dāng)的面積取得最大值時(shí)直線(xiàn)的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓:的一個(gè)頂點(diǎn)為,離心率為.直線(xiàn)與橢圓交于不同的兩點(diǎn)M,N.
(Ⅰ)求橢圓的方程;
(Ⅱ)當(dāng)△AMN得面積為時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分12分)
已知中心在原點(diǎn)O,焦點(diǎn)在x軸上的橢圓E過(guò)點(diǎn)(1,),離心率為
(Ⅰ)求橢圓E的方程;
(Ⅱ)直線(xiàn)xy+1=0與橢圓E相交于A、B(BA上方)兩點(diǎn),問(wèn)是否存在直線(xiàn)l,使l與橢圓相交于C、D(CD上方)兩點(diǎn)且ABCD為平行四邊形,若存在,求直線(xiàn)l的方程與平行四邊形ABCD的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

動(dòng)圓經(jīng)過(guò)定點(diǎn),且與直線(xiàn)相切。
(1)求圓心的軌跡方程;
(2)直線(xiàn)過(guò)定點(diǎn)與曲線(xiàn)交于、兩點(diǎn):
①若,求直線(xiàn)的方程;
②若點(diǎn)始終在以為直徑的圓內(nèi),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,2),直線(xiàn)l:x+y-4=0,點(diǎn)B(x,y)是圓C:x2+y2-2x-1=0上的動(dòng)點(diǎn),AD⊥l,BE⊥l,垂足分別為D、E,則線(xiàn)段DE的最大值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題12分)
已知橢圓的右焦點(diǎn)為F,上頂點(diǎn)為A,P為C上任一點(diǎn),MN是圓的一條直徑,若與AF平行且在y軸上的截距為的直線(xiàn)恰好與圓相切.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若的最大值為49,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

雙曲線(xiàn)的焦點(diǎn)坐標(biāo)是 (   )
A.(–2,0),(2,0)B.(0,–2),(0,2)
C.(0,–4),(0,4)D.(–4,0),(4,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

k為何值時(shí),直線(xiàn)y=kx+2和橢圓有兩個(gè)交點(diǎn) (   )
A.—<k<B.k>或k< —
C.—kD.k或k

查看答案和解析>>

同步練習(xí)冊(cè)答案