已知函數(shù),其中且.
(1)討論的單調(diào)性;
(2) 若不等式恒成立,求實數(shù)取值范圍;
(3)若方程存在兩個異號實根,,求證:
(1)詳見解析;(2);(3)證明詳見解析.
解析試題分析:本題主要考查導(dǎo)數(shù)的運算、利用導(dǎo)數(shù)判斷導(dǎo)數(shù)的單調(diào)性、利用導(dǎo)數(shù)求函數(shù)的單調(diào)性、利用導(dǎo)數(shù)求函數(shù)的最值等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力、計算能力.第一問,先求函數(shù)的定義域,對求導(dǎo),由于,所以討論a的正負(fù),利用的正負(fù),判斷函數(shù)的單調(diào)性;第二問,結(jié)合第一問的結(jié)論,當(dāng)時舉一反例證明不恒成立,當(dāng)時,將恒成立轉(zhuǎn)化為恒成立,令,利用導(dǎo)數(shù)求的最小值;第三問,要證,需證,令,利用函數(shù)的單調(diào)性,解出的大小.
(1)的定義域為.
其導(dǎo)數(shù) 2分
①當(dāng)時,,函數(shù)在上是增函數(shù);
②當(dāng)時,在區(qū)間上,;在區(qū)間(0,+∞)上,.
所以,在是增函數(shù),在(0,+∞)是減函數(shù). 4分
(2)當(dāng)時, 則取適當(dāng)?shù)臄?shù)能使,比如取,
能使, 所以不合題意 6分
當(dāng)時,令,則
問題化為求恒成立時的取值范圍.
由于
在區(qū)間上,;在區(qū)間上,. 8分
的最小值為,所以只需
即,, 10分
(3)由于存在兩個異號根,不仿設(shè),因為,所以 11分
構(gòu)造函數(shù):()
所以函數(shù)在區(qū)間上為減函數(shù). ,則,
于是
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(R),為其導(dǎo)函數(shù),且時有極小值.
(1)求的單調(diào)遞減區(qū)間;
(2)若,,當(dāng)時,對于任意x,和的值至少有一個是正數(shù),求實數(shù)m的取值范圍;
(3)若不等式(為正整數(shù))對任意正實數(shù)恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若,求曲線在點處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)設(shè)函數(shù).若至少存在一個,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,函數(shù)圖象上的點都在所表示的平面區(qū)域內(nèi),不等式恒成立,求實數(shù)的取值范圍. [來源:學(xué)科
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若函數(shù)y=f(x)在x=x0處取得極大值或極小值,則稱x0為函數(shù)y=f(x)的極值點.已知A,b是實數(shù),1和-1是函數(shù)f(x)=x3+Ax2+b x的兩個極值點.
(1)求A和b的值;
(2)設(shè)函數(shù)g(x)的導(dǎo)函數(shù)g′(x)=f(x)+2,求g(x)的極值點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com