已知和均為給定的大于1的自然數(shù).設(shè)集合,集合.
(1)當(dāng),時(shí),用列舉法表示集合;
(2)設(shè),,,其中證明:若,則.
(1);(2)詳見(jiàn)試題分析.
解析試題分析:(1)當(dāng)時(shí),采用列舉法可得集合;(2)先由已知寫(xiě)出及的表達(dá)式:,,再作差可得,放縮法化為最后利用等比數(shù)列前項(xiàng)和公式求和,判斷出差式的符號(hào),證得結(jié)果.
(1)當(dāng)時(shí),可得,.
(2)由及,可得
.
考點(diǎn):1.集合的含義與表示;2.等比數(shù)列的前項(xiàng)和公式;3.不等式的證明.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
己知等比數(shù)列所有項(xiàng)均為正數(shù),首,且成等差數(shù)列.
(I)求數(shù)列的通項(xiàng)公式;
(II)數(shù)列的前n項(xiàng)和為,若,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an }的前n項(xiàng)和為Sn,滿(mǎn)足an ¹ 0,,.
(1)求證:;
(2)設(shè),求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列, 滿(mǎn)足條件:, .
(1)求證數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和,并求使得對(duì)任意N*都成立的正整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的前項(xiàng)和為,且滿(mǎn)足,
(1)求數(shù)列的通項(xiàng)公式;
(2)求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的前項(xiàng)和為,且.
(1)求的通項(xiàng)公式;
(2)設(shè)恰有5個(gè)元素,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(2013·天津高考)已知首項(xiàng)為的等比數(shù)列{an}的前n項(xiàng)和為Sn(n∈N*),且-2S2,S3,4S4成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)證明Sn+≤(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的首項(xiàng).
(1)求證:數(shù)列為等比數(shù)列;
(2)記,若,求最大正整數(shù)的值;
(3)是否存在互不相等的正整數(shù),使成等差數(shù)列,且成等比數(shù)列?如果存在,請(qǐng)給予證明;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com