已知數(shù)列{an}的通項(xiàng)公式為an=3n-1,設(shè)bn=(
1
2
n,求{an•bn}的前n項(xiàng)和Tn
考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:利用錯(cuò)位相減求和法求解.
解答: 解:∵an=3n-1,bn=(
1
2
n,
∴an•bn=(3n-1)•(
1
2
n,
Tn=2•
1
2
+5•(
1
2
)2+8•(
1
2
)3+…+(3n-1)•(
1
2
)n
,①
1
2
Tn=2•(
1
2
)2+5•(
1
2
)3+8•(
1
2
)4+…+(3n-1)•(
1
2
)n+1
,②
①-②,得
1
2
Tn
=1+3[(
1
2
)2+(
1
2
)3+…+(
1
2
)n
]-(3n-1)•(
1
2
)n+1

=1+3×
1
4
(1-
1
2n-1
)
1-
1
2
-(3n-1)•(
1
2
)n+1

=
5
2
-
3
2n
-(3n-1)•(
1
2
)n+1
,
∴Tn=5-
3n+5
2n
點(diǎn)評(píng):本題考查數(shù)列的前n項(xiàng)和的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意錯(cuò)位相減求和法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

作出函數(shù)y=
1-|x|
|1-x|
的圖象,并求其分段解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正三棱柱ABC-A1B1C1中,AA1=AB,E是側(cè)棱AA1的中點(diǎn).
(Ⅰ)證明:BC1⊥EC;
(Ⅱ)求二面角A-EC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)g(x)=alnx,f(x)=x3+x2+bx.
(1)若f(x)在區(qū)間[1,2]上不是單調(diào)函數(shù),求實(shí)數(shù)b的范圍;
(2)若對(duì)任意x∈[1,e],都有g(shù)(x)≥-x2+(a+2)x恒成立,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)b=0時(shí),設(shè)F(x)=
f(-x),x<1
g(x),x≥1
,對(duì)任意給定的正實(shí)數(shù)a,曲線y=F(x)上是否存在兩點(diǎn)P,Q,使得△POQ是以O(shè)(O為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,而且此三角形斜邊中點(diǎn)在y軸上?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD是菱形,四邊形MADN是矩形,平面MADN⊥平面ABCD,E,F(xiàn)分別為MA,DC的中點(diǎn),求證:
(Ⅰ)EF∥平面MNCB;
(Ⅱ)平面MAC⊥平面BND.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=
2x
1+2x
的定義域和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

k為何值時(shí),直線y=kx+2和橢圓2x2+3y2=6有兩個(gè)公共點(diǎn)?有一個(gè)公共點(diǎn)?沒(méi)有公共點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(-1,0),點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)為B,直線AM,BM相交于點(diǎn)M,且兩直線的斜率kAM、kBM滿足kAM-kBM=2.
(1)求點(diǎn)M的軌跡C的方程;
(2)設(shè)軌跡C與y軸的交點(diǎn)為T,是否存在平行于AT的直線l,使得直線l與軌跡C有公共點(diǎn),且直線AT與l的距離等于
2
2
?若存在,求直線l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,直三棱柱A′B′C′-ABC,延長(zhǎng)CB到點(diǎn)D,使BD=BC,點(diǎn)E為A′D的中點(diǎn),∠ABC=90°,AB=BC=
2
,A′A=2.
(Ⅰ)證明:BE∥平面A′ACC′;
(Ⅱ)求三棱錐A′-EB′C的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案