計算定積分:
(1)
2
0
(4-2x)(4-x2)dx;
(2)
3
2
x
+
1
x
2dx;
(3)
π
2
0
(3x+sinx)dx.
考點:定積分
專題:導數(shù)的概念及應用
分析:根據(jù)定積分的計算法則計算即可.
解答: 解:(1)
2
0
(4-2x)(4-x2)dx=
2
0
(2x3-4x2-8x+16)dx=(
1
2
x4
-
4
3
x3
-4x2+16x)
|
2
0
=
40
3

(2)
3
2
x
+
1
x
2dx=
3
2
(x+2+
1
x
)dx=(
1
2
x2
+2x+lnx)
|
3
2
=4+ln
3
2

(3)
π
2
0
(3x+sinx)dx=(
3
2
x2
-cosx)|
 
π
2
0
=
3π3
8
+1
點評:本題考查了定積分的計算,關(guān)鍵是求出原函數(shù),屬于基礎(chǔ)題
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

解下列不等式:
(1)-3x2+6x>2
(2)-x2+2x+3<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有以下命題:
①命題“存在x∈R,x2-x-2≥0”的否定是:“不存在x∈R,x2-x-2<0”;
②線性回歸直線
y
=
b
x+
a
恒過樣本中心(
.
x
.
y
),且至少過一個樣本點.
③已知隨機變量ξ服從正態(tài)分布N(1,σ2),P(ξ≤4)=0.79,則P(ξ≤-2)=0.21;
④函數(shù)f(x)=e-x-ex的圖象的切線的斜率的最大值是-2;
⑤函數(shù)f(x)=x 
1
3
-(
1
2
x的零點在區(qū)間(
1
3
1
2
)內(nèi);
其中正確命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,線段AB在平面α內(nèi),線段AC⊥α,線段BD⊥AB,線段DD′⊥α,∠DBD′=30°,如果AB=a,AC=BD=b,求C、D間的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線的斜率k=2,A(3,5),B(x,7),C(-1,y)是這條直線上的三個點,求x和y的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x-2-x(x∈R),
(1)求證:函數(shù)f(x)是R上的增函數(shù);
(2)若x滿足條件2 x2≤(
1
2
x-2,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱柱ABC-A1BlC1中,CC1丄底面ABC,底面是邊長為2的正三角形,M,N分別是棱CC1、AB的中點.
(Ⅰ)求證:CN∥平面 AMB1;
(Ⅱ)若二面角A-MB1-C為45°,求CC1的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x2-2x(x∈[0,4])的最大值是
 
,最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α是第二象限角,sinα=
3
5
,則
1-cos2α
1+cos2α
=
 

查看答案和解析>>

同步練習冊答案