【題目】已知集合M是滿足下列條件的函數(shù)f(x)的全體:存在非零常數(shù)T,對任意x∈R,有f(x+T)=Tf(x)成立.給出如下函數(shù):①f(x)=x;②f(x)=2x;③f(x)= ;④f(x)=x2;則屬于集合M的函數(shù)個(gè)數(shù)為( )
A.1
B.2
C.3
D.4
【答案】A
【解析】解:①若f(x)=x,
則f(x+T)=x+T,Tf(x)=Tx,
∴x+T=Tx,不可能成立,不存在非零常數(shù)T,使f(x+T)=Tf(x)成立,則①不屬于集合M的函數(shù);
②f(x)=2x;
則f(x+T)=2x+T=2T2x ,
由f(x+T)=Tf(x)得2T2x=T2x ,
即2T=T,
作出函數(shù)y=2x和y=x的圖象,由圖象知兩個(gè)函數(shù)沒有交點(diǎn),
即方程2T=T無解,
∴不存在非零常數(shù)T,使f(x+T)=Tf(x)成立,則②不屬于集合M的函數(shù);
③若f(x)= ,
則f(x+T)=( )x+T=( )T( )x ,
由f(x+T)=Tf(x)得( )T( )x=T( )x ,
即( )T=T,
作出函數(shù)y=( )x和y=x的圖象,由圖象知兩個(gè)函數(shù)有1個(gè)交點(diǎn),
即方程( )T=T有一個(gè)解,
∴存在非零常數(shù)T,使f(x+T)=Tf(x)成立,則③屬于集合M的函數(shù);
④f(x)=x2;
則f(x+T)=(x+T)2 ,
由f(x+T)=Tf(x)得(x+T)2=Tx2 ,
即x2+2xT+T2=Tx2 ,
則方程x2+2xT+T2=Tx2 , 不可能恒成立,
∴不存在非零常數(shù)T,使f(x+T)=Tf(x)成立,則④不屬于集合M的函數(shù).
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某石化集團(tuán)獲得了某地深海油田區(qū)塊的開采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分幾口井,取得了地質(zhì)資料.進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來布置井位進(jìn)行全面勘探,由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用,勘探初期數(shù)據(jù)資料見如表:
(參考公式和計(jì)算結(jié)果:
, , , )
(1)1~6號(hào)舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求的值,并估計(jì)的預(yù)報(bào)值.
(2)現(xiàn)準(zhǔn)備勘探新井,若通過1,3,5,7號(hào)并計(jì)算出的, 的值(, 精確到0.01)相比于(1)中的, ,值之差不超過10%,則使用位置最接近的已有舊井,否則在新位置打開,請判斷可否使用舊井?
(3)設(shè)出油量與勘探深度的比值不低于20的勘探井稱為優(yōu)質(zhì)井,那么在原有6口井中任意勘探4口井,求勘探優(yōu)質(zhì)井?dāng)?shù)的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= x2﹣mlnx,g(x)=x2﹣(m+1)x,m>0.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)m≥1時(shí),討論函數(shù)f(x)與g(x)圖象的交點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,既是偶函數(shù),又在區(qū)間(0,+∞) 上單調(diào)遞減的函數(shù)是( )
A.y=x﹣2
B.y=x﹣1
C.y=x2
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=﹣ x3+bx2+cx+bc.
(1)若函數(shù)f(x)在x=1處有極值﹣ ,試確定b、c的值;
(2)若b=1,f(x)存在單調(diào)遞增區(qū)間,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與軸的正半軸重合,圓的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)).
(Ⅰ)若, 是直線與軸的交點(diǎn), 是圓上一動(dòng)點(diǎn),求的最大值;
(Ⅱ)若直線被圓截得的弦長等于圓的半徑倍,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1的參數(shù)方程是 (φ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程是ρ=2.正方形ABCD的頂點(diǎn)都在C2上,且A,B,C,D依逆時(shí)針次序排列,點(diǎn)A的極坐標(biāo)為.
(1)求點(diǎn)A,B,C,D的直角坐標(biāo);
(2)設(shè)P為C1上任意一點(diǎn),求|PA|2+|PB|2+|PC|2+|PD|2的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=x2|x﹣a|(a∈R).21世紀(jì)教育網(wǎng)
(1)判定f(x)的奇偶性,并說明理由;
(2)當(dāng)a≠0時(shí),是否存在一點(diǎn)M(t,0),使f(x)的圖象關(guān)于點(diǎn)M對稱,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高二年級共有1600人,現(xiàn)統(tǒng)計(jì)他們某項(xiàng)任務(wù)完成時(shí)間介于30分鐘到90分鐘之間,圖中是統(tǒng)計(jì)結(jié)果的頻率分布直方圖.
(1)求平均值、眾數(shù)、中位數(shù);
(2)若學(xué)校規(guī)定完成時(shí)間在分鐘內(nèi)的成績?yōu)?/span>等;完成時(shí)間在分鐘內(nèi)的成績?yōu)?/span>等;完成時(shí)間在分鐘內(nèi)的成績?yōu)?/span>等,按成績分層抽樣從全校學(xué)生中抽取10名學(xué)生,則成績?yōu)?/span>等的學(xué)生抽取人數(shù)為?
(3)在(2)條件下抽取的成績?yōu)?/span>等的學(xué)生中再隨機(jī)選取兩人,求兩人中至少有一人完成任務(wù)時(shí)間在分鐘的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com