【題目】已知曲線C1的參數(shù)方程是 (φ為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程是ρ2.正方形ABCD的頂點都在C2上,且A,BC,D依逆時針次序排列,點A的極坐標為.

(1)求點A,B,C,D的直角坐標;

(2)PC1上任意一點,求|PA|2|PB|2|PC|2|PD|2的取值范圍.

【答案】1A(1, ),B(,1)C(1,,- ),D(,-1).(2[32,52]

【解析】(1)由已知可得A,B,

CD,

A(1),B(,1),C(1,,- ),D(,-1)

(2)P(2cosφ,3sinφ),令S|PA|2|PB|2|PC|2|PD|2,則S16cos2φ36sin2φ163220sin2φ.因為0≤sin2φ≤1,

所以S的取值范圍是[32,52]

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知圓O外有一點P,作圓O的切線PM,M為切點,過PM的中點N,作割線NAB,交圓于A、B兩點,連接PA并延長,交圓O于點C,連續(xù)PB交圓O于點D,若MC=BC.

(1)求證:△APM∽△ABP;
(2)求證:四邊形PMCD是平行四邊形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,△OAB是等腰三角形,∠AOB=120°.以O為圓心, OA為半徑作圓.

(1)證明:直線AB與⊙O相切;
(2)點C,D在⊙O上,且A,B,C,D四點共圓,證明:AB∥CD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合M是滿足下列條件的函數(shù)f(x)的全體:存在非零常數(shù)T,對任意x∈R,有f(x+T)=Tf(x)成立.給出如下函數(shù):①f(x)=x;②f(x)=2x;③f(x)= ;④f(x)=x2;則屬于集合M的函數(shù)個數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)是定義在R上的奇函數(shù),且在區(qū)間(0,+∞)上是單調(diào)遞增,若 ,△ABC的內(nèi)角滿足f(cosA)<0,則A的取值范圍是(
A.(
B.( ,π)

C.(0, )∪( ,π)
D.( )∪( ,π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左焦點為F1有一小球A 從F1處以速度v開始沿直線運動,經(jīng)橢圓壁反射(無論經(jīng)過幾次反射速度大小始終保持不變,小球半徑忽略不計),若小球第一次回到F1時,它所用的最長時間是最短時間的5倍,則橢圓的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)的定義域,值域分別為A,B,且A∩B是單元集,下列命題中:
①若A∩B={a},則f(a)=a;
②若B不是單元集,則滿足f[f(x)]=f(x)的x值可能不存在;
③若f(x)具有奇偶性,則f(x)可能為偶函數(shù);
④若f(x)不是常數(shù)函數(shù),則f(x)不可能為周期函數(shù).
正確命題的序號為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)= ,則該函數(shù)在(﹣∞,+∞)上是(
A.單調(diào)遞減無最小值
B.單調(diào)遞減有最小值
C.單調(diào)遞增無最大值
D.單調(diào)遞增有最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩個籃球運動員互不影響地在同一位置投球,命中率分別為 與p,且乙投球2次均未命中的概率為
(1)求乙投球的命中率p;
(2)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為ξ,求ξ的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案