【題目】設函數(shù)f(x)的定義域,值域分別為A,B,且A∩B是單元集,下列命題中:
①若A∩B={a},則f(a)=a;
②若B不是單元集,則滿足f[f(x)]=f(x)的x值可能不存在;
③若f(x)具有奇偶性,則f(x)可能為偶函數(shù);
④若f(x)不是常數(shù)函數(shù),則f(x)不可能為周期函數(shù).
正確命題的序號為

【答案】②③
【解析】通過 對概念的理解,可以如下判斷這四個命題的真假.
①a∈A,即f(a)有定義;a∈B,即存在b∈A使得f(b)=a.這里并不要求f(a)=a;
比如,A={0,1},f(x)=x+1;①不對;
②構(gòu)造一個一一對應的函數(shù)如:f(x)=x+1,A={0,1},B={1,2},
要f(f(x))有意義,只有x=0,f(f(0))=f(1)=2≠f(0);因此②成立
③說可能存在,具體找到一個就行,常數(shù)函數(shù)f(x)=1.③也成立
④要求A∩B是單元集,周期函數(shù)的定義域是無界的,但不一定要連續(xù),構(gòu)造一個周期函數(shù)去否定④,
如A=Z,若x是偶數(shù),則,f(x)=0,若x為奇數(shù),則f(x)= ,f(x)是周期為2的周期函數(shù),B={0, },A∩B={0};
所以答案是②③.
【考點精析】根據(jù)題目的已知條件,利用函數(shù)的奇偶性的相關知識可以得到問題的答案,需要掌握偶函數(shù)的圖象關于y軸對稱;奇函數(shù)的圖象關于原點對稱.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的中心在原點,焦點在軸上,離心率等于,它的一個頂點恰好是拋物線的焦點。

(1)求橢圓C的標準方程。

(2)已知點在橢圓C上,點A、B是橢圓C上不同于P、Q的兩個動點,且滿足: 。試問:直線AB的斜率是否為定值?請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=﹣ x3+bx2+cx+bc.
(1)若函數(shù)f(x)在x=1處有極值﹣ ,試確定b、c的值;
(2)若b=1,f(x)存在單調(diào)遞增區(qū)間,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C1的參數(shù)方程是 (φ為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程是ρ2.正方形ABCD的頂點都在C2上,且A,BC,D依逆時針次序排列,點A的極坐標為.

(1)求點A,BC,D的直角坐標;

(2)PC1上任意一點,求|PA|2|PB|2|PC|2|PD|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】海南省椰樹集團引進德國凈水設備的使用年限(年)和所需要的維修費用y(千元)的幾組統(tǒng)計數(shù)據(jù)如表:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0


(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出 關于x的線性回歸方程
(2)我們把中(1)的線性回歸方程記作模型一,觀察散點圖發(fā)現(xiàn)該組數(shù)據(jù)也可以用函數(shù)模型 =c1ln(c2x)擬合,記作模型二.經(jīng)計算模型二的相關指數(shù)R2=0.64,
①請說明R2=0.64這一數(shù)據(jù)在線性回歸模型中的實際意義.
②計算模型一中的R2的值(精確到0.01),通過數(shù)據(jù)說明,兩種模型中哪種模型的擬合效果好.
參考公式和數(shù)值:用最小工乘法求線性回歸方程系數(shù)公式 = , .R2=1﹣ =0.651,(2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x)=x2|x﹣a|(a∈R).21世紀教育網(wǎng)
(1)判定f(x)的奇偶性,并說明理由;
(2)當a≠0時,是否存在一點M(t,0),使f(x)的圖象關于點M對稱,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x(lnxax)有兩個極值點,則實數(shù)a的取值范圍是(   )

A. (-∞,0) B. C. (0,1) D. (0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=kx2+(3+k)x+3,其中k為常數(shù),且k≠0.
(1)若f(2)=3,求函數(shù)f(x)的表達式;
(2)在(1)的條件下,設函數(shù)g(x)=f(x)﹣mx,若g(x)在區(qū)間[﹣2,2]上是單調(diào)函數(shù),求實數(shù)m的取值范圍;
(3)是否存在k使得函數(shù)f(x)在[﹣1,4]上的最大值是4?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合U={x∈N|0<x≤8},S={1,2,4,5},T={3,5,7},則S∩(CUT)=(  )
A.{1,2,4}
B.{1,2,3,4,5,7}
C.{1,2}
D.{1,2,4,5,6,8}

查看答案和解析>>

同步練習冊答案