【題目】設(shè)命題對任意,不等式恒成立;命題q:存在,使得不等式成立.

1)若p為真命題,求實(shí)數(shù)m的取值范圍;

2)若命題p、q有且只有一個是真命題,求實(shí)數(shù)m的取值范圍.

【答案】12

【解析】

1)命題為真,只需,根據(jù)一次函數(shù)的單調(diào)性,轉(zhuǎn)化為求關(guān)于的一元二次不等式;

2)命題為真,只需,根據(jù)二次函數(shù)的性質(zhì),求出的范圍,依題意求出假,和真時,實(shí)數(shù)m的取值范圍.

(1)對于命題p:對任意,不等式恒成立,

,有,,

所以p為真時,實(shí)數(shù)m的取值范圍是

(2)命題q:存在,使得不等式成立,

只需,而,,,

即命題q為真時,實(shí)數(shù)m的取值范圍是

依題意命題一真一假,

p為假命題, q為真命題,則,得;

q為假命題, p為真命題,則,得,

綜上,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:

將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為體育迷

1)根據(jù)已知條件完成下面的2×2列聯(lián)表;

2)根據(jù)此資料,判斷是否有的把握認(rèn)為體育迷與性別有關(guān)?

非體育迷

體育迷

合計(jì)

10

55

合計(jì)

附:,其中.

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年初,由于疫情影響,開學(xué)延遲,為了不影響學(xué)生的學(xué)習(xí),國務(wù)院、省市區(qū)教育行政部門倡導(dǎo)各校開展“停學(xué)不停課、停學(xué)不停教”,某校語文學(xué)科安排學(xué)生學(xué)習(xí)內(nèi)容包含老師推送文本資料學(xué)習(xí)和視頻資料學(xué)習(xí)兩類,且這兩類學(xué)習(xí)互不影響已知其積分規(guī)則如下:每閱讀一篇文本資料積1分,每日上限積5分;觀看視頻1個積2分,每日上限積6.經(jīng)過抽樣統(tǒng)計(jì)發(fā)現(xiàn),文本資料學(xué)習(xí)積分的概率分布表如表1所示,視頻資料學(xué)習(xí)積分的概率分布表如表2所示.

1)現(xiàn)隨機(jī)抽取1人了解學(xué)習(xí)情況,求其每日學(xué)習(xí)積分不低于9分的概率;

2)現(xiàn)隨機(jī)抽取3人了解學(xué)習(xí)情況,設(shè)積分不低于9分的人數(shù)為ξ,求ξ的概率分布及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有形狀、大小都相同的5張卡片,其中有2張卡片寫著文字“中”,2張卡片寫著文字“國”,1張卡片寫著文字“夢”.若從中任意取出3張,則取出的3張卡片上的文字能組成“中國夢”的概率為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)a=2,求函數(shù)的極值;

(2)若函數(shù)有兩個零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是菱形, 是矩形,平面平面, , , , 的中點(diǎn).

(1)求證: 平面;

(2)在線段上是否存在點(diǎn),使二面角的大小為?若存在,求出的長,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為了對研發(fā)的一種產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到如下數(shù)據(jù):

附:對于一組數(shù)據(jù),其回歸直線的斜率的最小二乘估計(jì)值為;

本題參考數(shù)值:.

1)若銷量y與單價x服從線性相關(guān)關(guān)系,求該回歸方程;

2)在(1)的前提下,若該產(chǎn)品的成本是5/件,問:產(chǎn)品該如何確定單價,可使工廠獲得最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了增強(qiáng)民眾防控病毒的意識,舉行了“預(yù)防新冠病毒知識競賽”網(wǎng)上答題,隨機(jī)抽取人,答題成績統(tǒng)計(jì)如圖所示.

1)由直方圖可認(rèn)為答題者的成績服從正態(tài)分布,其中,分別為答題者的平均成績和成績的方差,那么這名答題者成績超過分的人數(shù)估計(jì)有多少人?(同一組中的數(shù)據(jù)用該組的區(qū)間中點(diǎn)值作代表)

2)如果成績超過分的民眾我們認(rèn)為是“防御知識合格者”,用這名答題者的成績來估計(jì)全市的民眾,現(xiàn)從全市中隨機(jī)抽取人,“防御知識合格者”的人數(shù)為,求.(精確到

附:①,;②,則,;③,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查某品牌飲料的某種食品添加劑是否超標(biāo),現(xiàn)對該品牌下的兩種飲料一種是碳酸飲料含二氧化碳,另一種是果汁飲料不含二氧化碳進(jìn)行檢測,現(xiàn)隨機(jī)抽取了碳酸飲料、果汁飲料各10均是組成的一個樣本,進(jìn)行了檢測,得到了如下莖葉圖根據(jù)國家食品安全規(guī)定當(dāng)該種添加劑的指標(biāo)大于毫克為偏高,反之即為正常.

1)依據(jù)上述樣本數(shù)據(jù),完成下列列聯(lián)表,并判斷能否在犯錯誤的概率不超過的前提下認(rèn)為食品添加劑是否偏高與是否含二氧化碳有關(guān)系?

正常

偏高

合計(jì)

碳酸飲料

果汁飲料

合計(jì)

2)現(xiàn)從食品添加劑偏高的樣本中隨機(jī)抽取2瓶飲料去做其它檢測,求這兩種飲料都被抽到的概率.

參考公式:,其中

參考數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊答案