【題目】某工廠為了對(duì)研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):
附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率的最小二乘估計(jì)值為;
本題參考數(shù)值:.
(1)若銷量y與單價(jià)x服從線性相關(guān)關(guān)系,求該回歸方程;
(2)在(1)的前提下,若該產(chǎn)品的成本是5元/件,問:產(chǎn)品該如何確定單價(jià),可使工廠獲得最大利潤.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)討論函數(shù)在上的單調(diào)性;
(2)設(shè),當(dāng)時(shí),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F為PC的中點(diǎn),AF⊥PB.
(1)求PA的長;
(2)求二面角B﹣AF﹣D的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題對(duì)任意,不等式恒成立;命題q:存在,使得不等式成立.
(1)若p為真命題,求實(shí)數(shù)m的取值范圍;
(2)若命題p、q有且只有一個(gè)是真命題,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某次文藝匯演為,要將A,B,C,D,E,F這六個(gè)不同節(jié)目編排成節(jié)目單,如下表:
序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 |
節(jié)目 |
如果A,B兩個(gè)節(jié)目要相鄰,且都不排在第3號(hào)位置,那么節(jié)目單上不同的排序方式有
A. 192種B. 144種C. 96種D. 72種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為考察某種藥物預(yù)防疾病的效果,進(jìn)行動(dòng)物試驗(yàn),調(diào)查了 105 個(gè)樣本,統(tǒng)計(jì)結(jié)果為:服藥的共有 55 個(gè)樣本,服藥但患病的仍有 10 個(gè)樣本,沒有服藥且未患病的有 30個(gè)樣本.
(1)根據(jù)所給樣本數(shù)據(jù)完成 列聯(lián)表中的數(shù)據(jù);
(2)請(qǐng)問能有多大把握認(rèn)為藥物有效?
(參考公式:獨(dú)立性檢驗(yàn)臨界值表
概率 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
患病 | 不患病 | 合計(jì) | |
服藥 | |||
沒服藥 | |||
合計(jì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查某校高二學(xué)生的身高是否與性別有關(guān),隨機(jī)調(diào)查該校64名高二學(xué)生,得到2×2列聯(lián)表如表:
男生 | 女生 | 總計(jì) | |
身高低于170cm | 8 | 24 | 32 |
身高不低于170cm | 26 | 6 | 32 |
總計(jì) | 34 | 30 | 64 |
附:K2
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
由此得出的正確結(jié)論是( )
A.在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為“身高與性別無關(guān)”
B.在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為“身高與性別有關(guān)”
C.有99.9%的把握認(rèn)為“身高與性別無關(guān)”
D.有99.9%的把握認(rèn)為“身高與性別有關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年3月智能共享單車項(xiàng)目正式登陸某市,兩種車型“小綠車”、“小黃車”采用分時(shí)段計(jì)費(fèi)的方式,“小綠車”每30分鐘收費(fèi)元不足30分鐘的部分按30分鐘計(jì)算;“小黃車”每30分鐘收費(fèi)1元不足30分鐘的部分按30分鐘計(jì)算有甲、乙、丙三人相互獨(dú)立的到租車點(diǎn)租車騎行各租一車一次設(shè)甲、乙、丙不超過30分鐘還車的概率分別為,,,三人租車時(shí)間都不會(huì)超過60分鐘甲、乙均租用“小綠車”,丙租用“小黃車”.
求甲、乙兩人所付的費(fèi)用之和等于丙所付的費(fèi)用的概率;
2設(shè)甲、乙、丙三人所付的費(fèi)用之和為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的一個(gè)頂點(diǎn)為,且過拋物線的焦點(diǎn)F.
(1)求橢圓C的方程及離心率;
(2)設(shè)點(diǎn)Q是橢圓C上一動(dòng)點(diǎn),試問直線上是否存在點(diǎn)P,使得四邊形PFQB是平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com