【題目】某學(xué)校運(yùn)動(dòng)會(huì)的立定跳遠(yuǎn)和30秒跳繩兩個(gè)單項(xiàng)比賽分成預(yù)賽和決賽兩個(gè)階段.表為10名學(xué)生的預(yù)賽成績(jī),其中有三個(gè)數(shù)據(jù)模糊.

在這10名學(xué)生中,進(jìn)入立定跳遠(yuǎn)決賽的有8人,同時(shí)進(jìn)入立定跳遠(yuǎn)決賽和30秒跳繩決賽的有6人,則( )

A. 2號(hào)學(xué)生進(jìn)入30秒跳繩決賽 B. 5號(hào)學(xué)生進(jìn)入30秒跳繩決賽

C. 8號(hào)學(xué)生進(jìn)入30秒跳繩決賽 D. 9號(hào)學(xué)生進(jìn)入30秒跳繩決賽

【答案】B

【解析】在這10名學(xué)生中,進(jìn)入立定跳遠(yuǎn)決賽的有8人,

∴編號(hào)為1,2,3,4,5,6,7,8的學(xué)生進(jìn)入立定跳遠(yuǎn)決賽.

又同時(shí)進(jìn)入立定跳遠(yuǎn)決賽和30秒跳繩決賽的有6人,

∴編號(hào)為3,6,7的學(xué)生必進(jìn)入30秒跳繩決賽,

剩下的1,2,4,5,8號(hào)學(xué)生的成績(jī)分別為:63, ,60,63, 有且只有3人進(jìn)入30秒跳繩決賽,

∴成績(jī)?yōu)?3的同學(xué)必進(jìn)入30秒跳繩決賽.選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)在圓外,過(guò)點(diǎn)作圓的切線,設(shè)切點(diǎn)為.

(1)若點(diǎn)運(yùn)動(dòng)到處,求此時(shí)切線的方程;

(2)求滿足的點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象過(guò)點(diǎn),圖象與P點(diǎn)最近的一個(gè)最高點(diǎn)坐標(biāo)為.

1)求函數(shù)的單調(diào)遞增區(qū)間;

2)若,求函數(shù)的值域;

3)若方程上有兩個(gè)不相等的實(shí)數(shù)根,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)訄AM與直線相切,且與定圓C外切,

求動(dòng)圓圓心M的軌跡方程.

求動(dòng)圓圓心M的軌跡上的點(diǎn)到直線的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義域?yàn)?/span>的函數(shù)滿足:,且對(duì)于任意實(shí)數(shù)恒有,當(dāng)時(shí),.

(1)求的值,并證明當(dāng)時(shí),

(2)判斷函數(shù)上的單調(diào)性并加以證明;

(3)若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】扎比瓦卡是2018年俄羅斯世界杯足球賽吉祥物,該吉祥物以西伯利亞平原狼為藍(lán)本.扎比瓦卡,俄語(yǔ)意為“進(jìn)球者”.某廠生產(chǎn)“扎比瓦卡”的固定成本為15000元,每生產(chǎn)一件“扎比瓦卡”需要增加投入20元,根據(jù)初步測(cè)算,每個(gè)銷(xiāo)售價(jià)格滿足函數(shù),其中x是“扎比瓦卡”的月產(chǎn)量(每月全部售完).

1)將利潤(rùn)表示為月產(chǎn)量的函數(shù);

2)當(dāng)月產(chǎn)量為何值時(shí),該廠所獲利潤(rùn)最大?最大利潤(rùn)是多少?(總收益=總成本+利潤(rùn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為1, 圓心在.

1)若圓心也在直線上,過(guò)點(diǎn)作圓的切線,求切線方程;

2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{an}是等差數(shù)列,{bn}是各項(xiàng)均為正數(shù)的等比數(shù)列,且b1a11b3a4,b1b2b3a3a4.

(1)求數(shù)列{an},{bn}的通項(xiàng)公式;

(2)設(shè)cnanbn,求數(shù)列{cn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)P是拋物線y2=4x上的一個(gè)動(dòng)點(diǎn),F(xiàn)為拋物線的焦點(diǎn),記點(diǎn)P到點(diǎn)A(-1,1)的距離與點(diǎn)P到直線x= - 1的距離之和的最小值為M,若B(3,2),記|PB|+|PF|的最小值為N,則M+N= ______________

查看答案和解析>>

同步練習(xí)冊(cè)答案