【題目】已知動圓M與直線相切,且與定圓C:外切,
求動圓圓心M的軌跡方程.
求動圓圓心M的軌跡上的點(diǎn)到直線的最短距離.
【答案】(1); (2).
【解析】
(1)設(shè)動圓圓心為M(x,y),半徑為r,題目動點(diǎn)M(x,y)到C(0,﹣3)的距離等于點(diǎn)M到直線y=3的距離,判斷軌跡是拋物線方程,求解即可;
(2)設(shè)直線方程為y=x+m,,利用判別式為0,求出切線方程,利用平行線之間的距離求解即可.
設(shè)動圓圓心為,半徑為r,
由題意知動點(diǎn)到的距離等于點(diǎn)M到直線的距離,
由拋物線的定義可知,動圓圓心M的軌跡是以為焦點(diǎn),以為準(zhǔn)線的一條拋物線,
故所求動圓圓心M的軌跡方程為:.
(2)設(shè)直線方程為y=x+m,,
可得x2+12x+12m=0,由△=122﹣4×12m=0,
解得m=3,d.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】哈三中群力校區(qū)高二、六班同學(xué)用隨機(jī)抽樣的辦法對所在校區(qū)老師的飲食習(xí)慣進(jìn)行了一次調(diào)查, 飲食指數(shù)結(jié)果用莖葉圖表示如圖, 圖中飲食指數(shù)低于70的人是飲食以蔬菜為主;飲食指數(shù)高于70的人是飲食以肉類為主.
(1)完成下列2×2列聯(lián)表:
能否有99%的把握認(rèn)為老師的飲食習(xí)慣與年齡有關(guān)?
(2)從群力校區(qū)任選一名老師, 設(shè)“選到45歲以上老師”為事件, “飲食指數(shù)高于70的老師”為事件, 用調(diào)查的結(jié)果估計(jì)及(用最簡分?jǐn)?shù)作答);
(3)為了給食堂提供老師的飲食信息, 根據(jù)(1)(2)的結(jié)論,能否有更好的抽樣方法來估計(jì)老師的飲食習(xí)慣, 并說明理由.附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“雙十一”已經(jīng)成為網(wǎng)民們的網(wǎng)購狂歡節(jié),某電子商務(wù)平臺對某市的網(wǎng)民在今年“雙十一”的網(wǎng)購情況進(jìn)行摸底調(diào)查,用隨機(jī)抽樣的方法抽取了100人,其消費(fèi)金額 (百元)的頻率分布直方圖如圖所示:
(1)求網(wǎng)民消費(fèi)金額的中位數(shù);
(2)把下表中空格里的數(shù)填上,能否有的把握認(rèn)為網(wǎng)購消費(fèi)與性別有關(guān);
(3)將(2)中的頻率當(dāng)作概率,電子商務(wù)平臺從該市網(wǎng)民中隨機(jī)抽取10人贈送電子禮金,求這10人中女性的人數(shù)的數(shù)學(xué)期望.
男 | 女 | 合計(jì) | |
30 | |||
合計(jì) | 45 |
附表:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為實(shí)常數(shù),函數(shù).
(1)求函數(shù)的最值;
(2)設(shè).
(i)討論函數(shù)的單調(diào)性;
(ⅱ) 若函數(shù)有兩個不同的零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)當(dāng)時,若對任意,都有成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,動點(diǎn)P從單位正方形ABCD頂點(diǎn)A開始,順次經(jīng)B、C、D繞邊界一周,當(dāng) 表示點(diǎn)P的行程, 表示PA之長時,求y關(guān)于x的解析式,并求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校運(yùn)動會的立定跳遠(yuǎn)和30秒跳繩兩個單項(xiàng)比賽分成預(yù)賽和決賽兩個階段.表為10名學(xué)生的預(yù)賽成績,其中有三個數(shù)據(jù)模糊.
在這10名學(xué)生中,進(jìn)入立定跳遠(yuǎn)決賽的有8人,同時進(jìn)入立定跳遠(yuǎn)決賽和30秒跳繩決賽的有6人,則( )
A. 2號學(xué)生進(jìn)入30秒跳繩決賽 B. 5號學(xué)生進(jìn)入30秒跳繩決賽
C. 8號學(xué)生進(jìn)入30秒跳繩決賽 D. 9號學(xué)生進(jìn)入30秒跳繩決賽
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為F,且過點(diǎn)A (2,2),橢圓的離心率為,點(diǎn)B為拋物線C與橢圓D的一個公共點(diǎn),且.
(Ⅰ)求橢圓D的方程;
(Ⅱ)過橢圓內(nèi)一點(diǎn)P(0,t)的直線l的斜率為k,且與橢圓C交于M,N兩點(diǎn),設(shè)直線OM,ON(O為坐標(biāo)原點(diǎn))的斜率分別為k1,k2,若對任意k,存在實(shí)數(shù)λ,使得k1+ k2=λk,求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com