【題目】已知函數(shù),其中為常數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若有兩個(gè)相異零點(diǎn),求證:.
【答案】(1)詳見解析;(2)詳見解析.
【解析】
(1)對(duì)f′(x)中的k分類討論,根據(jù)f′(x)的正負(fù)判斷函數(shù)的單調(diào)性即可.
(2)由題意得lnx1﹣kx1=0,lnx2﹣kx2=0,兩式作差可得,lnx1﹣lnx2=k(x1﹣x2),k=,要證lnx1+lnx2>2即k(x1+x2)>2,將k代換后,化簡(jiǎn)變形得,設(shè)t1,構(gòu)造函數(shù)g(t),利用新函數(shù)的導(dǎo)數(shù)求出單調(diào)區(qū)間,證得g(t)>g(1)=0即可.
(1),
①當(dāng)時(shí),,在區(qū)間上單調(diào)遞增;
②當(dāng)時(shí),由,得,所以在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減.
(2)因?yàn)?/span>,是的兩個(gè)零點(diǎn),則,,
所以,.
要證,只要證,即證,
即證,即證,只要證.
設(shè),則只要證.
設(shè),則,所以在上單調(diào)遞增.
所以,即,所以,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】空氣質(zhì)量指數(shù)是一種反映和評(píng)價(jià)空氣質(zhì)量的方法,指數(shù)與空氣質(zhì)量對(duì)應(yīng)如下表所示:
如圖是某城市2018年12月全月的指數(shù)變化統(tǒng)計(jì)圖.
根據(jù)統(tǒng)計(jì)圖判斷,下列結(jié)論正確的是( )
A. 整體上看,這個(gè)月的空氣質(zhì)量越來(lái)越差
B. 整體上看,前半月的空氣質(zhì)量好于后半月的空氣質(zhì)量
C. 從數(shù)據(jù)看,前半月的方差大于后半月的方差
D. 從數(shù)據(jù)看,前半月的平均值小于后半月的平均值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】宋元時(shí)期數(shù)學(xué)名著《算學(xué)啟蒙》中有關(guān)于“松竹并生”的問(wèn)題:松長(zhǎng)五尺,竹長(zhǎng)兩尺,松日自半,竹日自倍,松竹何日而長(zhǎng)等.如圖是源于其思想的一個(gè)程序框圖,若輸入,,則輸出的等于( )
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是邊長(zhǎng)為2的菱形,且,平面,,,點(diǎn)是線段上任意一點(diǎn).
(1)證明:平面平面;
(2)若的最大值是,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面,為直角,,,、分別為、的中點(diǎn).
(I)證明:平面平面;
(II)設(shè),且二面角的平面角大于,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐中,底面為平行四邊形
∠ADC=45°,,為的中點(diǎn),⊥平面,,為的中點(diǎn).
(1)證明:⊥平面;
(2)求直線與平面所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在上的函數(shù)滿足: , .若方程有5個(gè)實(shí)根,則正數(shù)a的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知p是r的充分條件而不是必要條件,q是r的充分條件,s是r的必要條件,q是s的必要條件,F(xiàn)有下列命題:①s是q的充要條件;②p是q的充分條件而不是必要條件;③r是q的必要條件而不是充分條件;④是的必要條件而不是充分條件;⑤r是s的充分條件而不是必要條件.則正確命題序號(hào)是_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com