(本題10分)如圖1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,M為線段AB的中點(diǎn),將△ACD沿折起,使平面ACD⊥平面ABC,得到幾何體D-ABC,如圖2所示.
(Ⅰ)求證:BC⊥平面ACD;
(Ⅱ)求二面角A-CD-M的余弦值.
(Ⅰ)見解析;(Ⅱ)cos∠MNO==。
【解析】(I) 取AC的中點(diǎn)O,連接DO,則DO⊥AC,因?yàn)槠矫鍭CD⊥平面ABC,所以DO⊥平面ABC,∴DO⊥BC,可得易證:,從而可證出BC⊥平面ACD;
(II)找(或做)出二面角的平面角.取CD的中點(diǎn)N,連接MO, NO, MN,則MO∥BC,
∴MO⊥平面ACD,∴MO⊥CD,∵AD⊥CD,ON∥AD,∴ON⊥CD,又∵M(jìn)O∩NO=O,
∴CD⊥平面MON,∴CD⊥MN,∴∠MNO是所求二面角的平面角.
解:(Ⅰ)取AC的中點(diǎn)O,連接DO,則DO⊥AC,
∵平面ADC⊥平面ABC,∴DO⊥平面ABC,∴DO⊥BC,………2分
在直角梯形ABCD中,連接CM,可得CM=AD=2,AC=BC=2,
∴AC2+BC2=AB2,∴AC⊥BC,
又∵DO∩AC=O,∴BC⊥平面ACD;………………………………3分
(Ⅱ)取CD的中點(diǎn)N,連接MO, NO, MN,
則MO∥BC,∴MO⊥平面ACD,∴MO⊥CD,……………………1分
∵AD⊥CD,ON∥AD,∴ON⊥CD,又∵M(jìn)O∩NO=O,
∴CD⊥平面MON,∴CD⊥MN,∴∠MNO是所求二面角的平面角…2分
在Rt△MON中,MO==,NO==1,
∴MN==,∴cos∠MNO==………………2分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2011-2012年山東省濟(jì)寧市高二上學(xué)期期中考試文科數(shù)學(xué) 題型:解答題
(本題10分)如圖,已知點(diǎn)A(2,3), B(4,1),△ABC是以AB為底邊的等腰三角形,點(diǎn)C在直線l:x-2y+2=0上
(Ⅰ)求AB邊上的高CE所在直線的方程
(Ⅱ)求△ABC的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年浙江省杭州市七校高一上學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題
(本題10分)如圖所示,將一矩形花壇擴(kuò)建成一個(gè)更大的矩形花壇,要求在的延長線上,在的延長線上,且對角線過點(diǎn).已知米,米.
(1)設(shè)(單位:米),要使花壇的面積大于9平方米,求的取值范圍;
(2)若(單位:米),則當(dāng),的長度分別是多少時(shí),花壇的面積最大?并求出最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆遼寧省撫順市六校聯(lián)合體高二下學(xué)期期末考試數(shù)學(xué) 題型:解答題
請考生在(22)、(23)、(24)三題中任選一題做答,如果多做,則按所做的第一題記分。
(本題10分)
如圖,內(nèi)接于⊙O,過點(diǎn)A的直線交⊙O于點(diǎn)P,交BC的延長線于點(diǎn)D,且
(Ⅰ)求證:
(Ⅱ)如果,⊙O的半徑為1,
且為弧的中點(diǎn),求的長。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆溫州十校聯(lián)合體高二第一學(xué)期期末聯(lián)考數(shù)學(xué)試卷(理科) 題型:解答題
本題10分)如圖,河道上有一座拋物線型拱橋,在正常水位時(shí),拱圈最高點(diǎn)距水面為8m,拱圈內(nèi)水面寬16 m., 為保證安全,要求通過的船頂部(設(shè)為平頂)與拱橋頂部在豎直方向上高度之差至少要有0.5m.
(1)一條船船頂部寬4m,要使這艘船安全通過,則船在水面以上部分高不能超過多少米?
(2)近日因受臺風(fēng)影響水位暴漲2.7m,為此必須加重船載,降低船身,才能通過橋洞. 試問:一艘頂部寬m,在水面以上部分高為4m的船船身應(yīng)至少降低多少米才能安全通過?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com