已知△ABC中,AB=BC=AP=1,∠ABC=120°,∠APC=150°.
(1)求三角形APB的面積S;
(2)求sin∠BCP的值.
考點(diǎn):正弦定理
專題:三角函數(shù)的求值,解三角形
分析:(1)先利用余弦定理求得AC,進(jìn)而在△ACP中利用正弦定理求得sin∠ACP的值,利用平方關(guān)系求得cos∠ACP,然后根據(jù)sin∠PAC=sin(30°-∠ACP)利用正弦的兩角和公式求得sin∠PAC的值,最后利用三角形面積公式求得答案.
(2)根據(jù)(1)中求得的sin∠ACP和cos∠ACP,根據(jù)sin∠BCP=sin(30°+∠ACP)利用兩角和與差的正弦函數(shù)求得答案.
解答: 解:
(1)在△ABC中,AC=
1+1-2×1×1×cos120°
=
3
,
在△ACP中,由正弦定理知:
AP
sin∠ACP
=
AC
sin∠APC
,
∴sin∠ACP=
AP•sin∠APC
AC
=
1
2
3
=
3
6

∴cos∠ACP=
1-
1
12
=
33
6
,
sin∠PAC=sin(30°-∠ACP)=sin30°cos∠ACP-cos30°sin∠ACP=
1
2
×
33
6
-
3
2
×
3
6
=
33
-3
12

∴三角形面積S=
1
2
•AB•AP•sin∠PAC=
1
2
×1×1×
33
-3
12
=
33
-3
24

(2)sin∠BCP=sin(30°+∠ACP)=
1
2
×
33
6
+
3
2
×
3
6
=
33
+3
12
點(diǎn)評(píng):本題主要考查了正弦定理和余弦定理的應(yīng)用,三角形恒等變換的應(yīng)用.解題的關(guān)鍵是求得sin∠ACP,以此為中介分別求得sin∠PAC和sin∠BCP.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=-x2+2x+3在區(qū)間[-2,2]上的最大、最小值分別為( 。
A、4,3B、3,-5
C、4,-5D、5,-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)向量
a
,
b
的夾角為θ,
a
=(2,1),
a
+3
b
=(5,4),求sinθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,AB=AC,∠BAC=90°,點(diǎn)E,F(xiàn)在BC邊上(不與B,C重合),∠EAF=45°,問(wèn)以BE、EF、FC三條線段為邊,是否總能構(gòu)成直角三角形?請(qǐng)說(shuō)明結(jié)論及理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),稱圓心在原點(diǎn)O、半徑是
a2+b2
的圓為橢圓C的“準(zhǔn)圓”.已知橢圓C的一個(gè)焦點(diǎn)為F(
2
,0),其短軸的一個(gè)端點(diǎn)到點(diǎn)F的距離為
3

(Ⅰ)求橢圓C及其“準(zhǔn)圓”的方程
(Ⅱ)若點(diǎn)A是橢圓C的“準(zhǔn)圓”與x軸正半軸的交點(diǎn),B,D是橢圓C上的相異兩點(diǎn),且BD⊥x軸,求
AB
AD
的取值范圍;
(Ⅲ)在橢圓C的“準(zhǔn)圓”上任取一點(diǎn)P(1,
3
),過(guò)點(diǎn)P作兩條直線l1,l2,使得l1,l2與橢圓C都只有一個(gè)公共點(diǎn),且l1,l2分別與橢圓的“準(zhǔn)圓”交于M,N兩點(diǎn).證明:直線MN過(guò)原點(diǎn)O.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,點(diǎn)P是圓x2+y2=4上一動(dòng)點(diǎn),PD⊥x軸于點(diǎn)D,記滿足
OM
=
1
2
OP
+
OD
)的動(dòng)點(diǎn)M的軌跡為Γ.
(Ⅰ)求軌跡Γ的方程;
(Ⅱ)已知直線l:y=kx+m與軌跡F交于不同兩點(diǎn)A,B,點(diǎn)G是線段AB中點(diǎn),射線OG交軌跡F于點(diǎn)Q,且
OQ
OG
,λ∈R.
①證明:λ2m2=4k2+1;
②求△AOB的面積S(λ)的解析式,并計(jì)算S(λ)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a(1-|x-1|),a為常數(shù),且a>1.
(1)證明函數(shù)f(x)的圖象關(guān)于直線x=1對(duì)稱;
(2)當(dāng)a=2時(shí),討論方程f(f(x))=m解的個(gè)數(shù);
(3)若x0滿足f(f(x0))=x0,但f(x0)≠x0,則稱x0為函數(shù)f(x)的二階周期點(diǎn),則f(x)是否有兩個(gè)二階周期點(diǎn),說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
|x+1|+|x-2|-a

(1)當(dāng)a=5時(shí),求f(x)的定義域;
(2)若f(x)定義域?yàn)镽,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在側(cè)棱垂直于底面三棱柱ABC-A1B1C1中,AC=3,AB=5,BC=4,AA1=4,點(diǎn)D是AB的中點(diǎn).
(1)求證:AC⊥BC1; 
(2)求證:AC1∥平面CDB1
(3)求三棱錐A1-B1CD的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案