【題目】如圖,在幾何體ABCDE中,四邊形ABCD是矩形,AB平面BEC,BEEC,AB=BE=EC=2,G,F(xiàn)分別是線段BE,DC的中點(diǎn).

)求證:平面 ;

)求平面AEF與平面BEC所成銳二面角的余弦值.

【答案】)詳見解析;(

【解析】解法一:()如圖,取的中點(diǎn),連接,,又G是BE的中點(diǎn),,

又F是CD中點(diǎn),,由四邊形ABCD是矩形得,,所以.從而四邊形是平行四邊形,所以,,又,所以

)如圖,在平面BEC內(nèi),過點(diǎn)B作,因?yàn)?/span>

又因?yàn)锳B平面BEC,所以ABBE,ABBQ

以B為原點(diǎn),分別以的方向?yàn)閤軸,y軸,z軸的正方向建立空間直角坐標(biāo)系,則A(0,0,2),B(0,0,0),E(2,0,0),F(xiàn)(2,2,1).因?yàn)锳B平面BEC,所以為平面BEC的法向量,

設(shè)為平面AEF的法向量.又

.

從而

所以平面AEF與平面BEC所成銳二面角的余弦值為

解法二:()如圖,取中點(diǎn),連接,又的中點(diǎn),可知,

,,所以平面

在矩形ABCD中,由M,F分別是AB,CD的中點(diǎn)得

,所以

又因?yàn)?/span>,,

所以平面,因?yàn)?/span>,所以平面

)同解法一.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為積極響應(yīng)國家“陽光體育運(yùn)動”的號召,某學(xué)校在了解到學(xué)生的實(shí)際運(yùn)動情況后,發(fā)起以“走出教室,走到操場,走到陽光”為口號的課外活動倡議。為調(diào)查該校學(xué)生每周平均體育運(yùn)動時間的情況,從高一高二基礎(chǔ)年級與高三三個年級學(xué)生中按照4:3:3的比例分層抽樣,收集300位學(xué)生每周平均體育運(yùn)動時間的樣本數(shù)據(jù)(單位:小時),得到如圖所示的頻率分布直方圖。

(1)據(jù)圖估計(jì)該校學(xué)生每周平均體育運(yùn)動時間.并估計(jì)高一年級每周平均體育運(yùn)動時間不足4小時的人數(shù);

(2)規(guī)定每周平均體育運(yùn)動時間不少于6小時記為“優(yōu)秀”,否則為“非優(yōu)秀”,在樣本數(shù)據(jù)中,有30位高三學(xué)生的每周平均體育運(yùn)動時間不少于6小時,請完成下列列聯(lián)表,并判斷是否有99%的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動時間是否“優(yōu)秀”與年級有關(guān)”.

基礎(chǔ)年級

高三

合計(jì)

優(yōu)秀

非優(yōu)秀

合計(jì)

300

P(K2k0)

0.10

0.05

0.010

0.005

k0

2.706

3.841

6.635

7.879

附:K2,na+b+c+d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】每年春晚都是萬眾矚目的時刻,這些節(jié)目體現(xiàn)的文化內(nèi)涵、歷史背景等反映了社會的進(jìn)步.國家的富強(qiáng),人民生活水平的提高等.某學(xué)校高三年級主任開學(xué)初為了解學(xué)生在看春晚后對節(jié)目體現(xiàn)的文化內(nèi)涵、歷史背景等是否會在今年的高考題中體現(xiàn)進(jìn)行過思考,特地隨機(jī)抽取100名高三學(xué)生(其中文科學(xué)生50,理科學(xué)生50名),進(jìn)行了調(diào)查.統(tǒng)計(jì)數(shù)據(jù)如表所示(不完整):

“思考過”

“沒有思考過”

總計(jì)

文科學(xué)生

40

10

理科學(xué)生

30

總計(jì)

100

(1)補(bǔ)充完整所給表格,并根據(jù)表格數(shù)據(jù)計(jì)算是否有的把握認(rèn)為看春晚后會思考節(jié)目體現(xiàn)的文化內(nèi)涵、歷史背景等與文理科學(xué)生有關(guān);

(2)①現(xiàn)從上表的”思考過”的文理科學(xué)生中按分層抽樣選出7人.再從這7人中隨機(jī)抽取4人,記這4人中“文科學(xué)生”的人數(shù)為,試求的分布列與數(shù)學(xué)期望;

②現(xiàn)設(shè)計(jì)一份試卷(題目知識點(diǎn)來自春晚相關(guān)知識整合與變化),假設(shè)“思考過”的學(xué)生及格率為,“沒有思考過”的學(xué)生的及格率為.現(xiàn)從“思考過”與“沒有思考過”的學(xué)生中分別隨機(jī)抽取一名學(xué)生進(jìn)行測試,求兩人至少有一個及格的概率.

附參考公式:,其中.

參考數(shù)據(jù):

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)產(chǎn)值在2008年~2017年的年增量(即當(dāng)年產(chǎn)值比前一年產(chǎn)值增加的量)統(tǒng)計(jì)圖如圖所示(單位:萬元),下列說法正確的是( )

A. 2009年產(chǎn)值比2008年產(chǎn)值少

B. 從2011年到2015年,產(chǎn)值年增量逐年減少

C. 產(chǎn)值年增量的增量最大的是2017年

D. 2016年的產(chǎn)值年增長率可能比2012年的產(chǎn)值年增長率低

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩個班級進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計(jì)成績,得到如下所示的列聯(lián)表:

優(yōu)秀

非優(yōu)秀

總計(jì)

甲班

10

b

乙班

c

30

總計(jì)105

已知在全部105人中隨機(jī)抽取1人,成績優(yōu)秀的概率為,則下列說法正確的是(

參考公式:

附表:

P(K2k)

0.050

0.010

0.001

k

3.841

6.635

10.828

A.列聯(lián)表中c的值為30,b的值為35

B.列聯(lián)表中c的值為15,b的值為50

C.根據(jù)列聯(lián)表中的數(shù)據(jù),若按95%的可靠性要求,能認(rèn)為成績與班級有關(guān)系

D.根據(jù)列聯(lián)表中的數(shù)據(jù),若按95%的可靠性要求,不能認(rèn)為成績與班級有關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)求的單調(diào)區(qū)間;

2)當(dāng)時,若對,都有)成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某單位甲、乙、丙三個部門的員工人數(shù)分別為24,1616.現(xiàn)采用分層抽樣的方法從中抽取7人,進(jìn)行睡眠時間的調(diào)查.

I)應(yīng)從甲、乙、丙三個部門的員工中分別抽取多少人?

II)若抽出的7人中有4人睡眠不足,3人睡眠充足,現(xiàn)從這7人中隨機(jī)抽取3人做進(jìn)一步的身體檢查.

i)用X表示抽取的3人中睡眠不足的員工人數(shù),求隨機(jī)變量X的分布列與數(shù)學(xué)期望;

ii)設(shè)A為事件“抽取的3人中,既有睡眠充足的員工,也有睡眠不足的員工”,求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,側(cè)面底面,底面是平行四邊形, , , , 的中點(diǎn),點(diǎn)在線段上.

(Ⅰ)求證: ;

(Ⅱ)試確定點(diǎn)的位置,使得直線與平面所成的角和直線與平面所成的角相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十九大提出,堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),某幫扶單位為幫助定點(diǎn)扶貧村真脫貧,堅(jiān)持扶貧同扶智相結(jié)合,幫助貧困村種植蜜柚,并利用電商進(jìn)行銷售,為了更好地銷售,現(xiàn)從該村的蜜柚樹上隨機(jī)摘下了100個蜜柚進(jìn)行測重,其質(zhì)量分別在,,,,,單位:克中,其頻率分布直方圖如圖所示.

按分層抽樣的方法從質(zhì)量落在,的蜜柚中抽取5個,再從這5個蜜柚中隨機(jī)抽取2個,求這2個蜜柚質(zhì)量均小于2000克的概率;

以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該貧困村的蜜柚樹上大約還有5000個蜜柚等待出售,某電商提出兩種收購方案:

A.所有蜜柚均以40元千克收購;

B.低于2250克的蜜柚以60元個收購,高于或等于2250克的以80元個收購.

請你通過計(jì)算為該村選擇收益最好的方案.

查看答案和解析>>

同步練習(xí)冊答案