【題目】某企業(yè)產(chǎn)值在2008年~2017年的年增量(即當年產(chǎn)值比前一年產(chǎn)值增加的量)統(tǒng)計圖如圖所示(單位:萬元),下列說法正確的是( )

A. 2009年產(chǎn)值比2008年產(chǎn)值少

B. 從2011年到2015年,產(chǎn)值年增量逐年減少

C. 產(chǎn)值年增量的增量最大的是2017年

D. 2016年的產(chǎn)值年增長率可能比2012年的產(chǎn)值年增長率低

【答案】D

【解析】

分析:讀懂題意,理解“年增量”量的含義,逐一分析選項中的說法,即可的結(jié)果.

詳解,2009年產(chǎn)值比2008年產(chǎn)值多萬元,故錯誤;

,2011年到2015年,產(chǎn)值年增量逐年增加,故錯誤;

,產(chǎn)值年增量的增量最大的不是2017年,故錯誤;

,因為增長率等于增長量除以上一年產(chǎn)值,由于上一年產(chǎn)值不確定,所以2016年的產(chǎn)值年增長率可能比2012年的產(chǎn)值年增長率低,對,故選D.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】為了緩解日益擁堵的交通狀況,不少城市實施車牌競價策略,以控制車輛數(shù)量.某地車牌競價的基本規(guī)則是:①“盲拍”,即所有參與競拍的人都要網(wǎng)絡報價一次,每個人不知曉其他人的報價,也不知道參與當期競拍的總?cè)藬?shù);②競價時間截止后,系統(tǒng)根據(jù)當期車牌配額,按照競拍人的出價從高到低分配名額.某人擬參加月份的車牌競拍,他為了預測最低成交價,根據(jù)競拍網(wǎng)站的數(shù)據(jù),統(tǒng)計了最近個月參與競拍的人數(shù)(見下表):

月份

月份編號

競拍人數(shù)(萬人)

(1)由收集數(shù)據(jù)的散點圖發(fā)現(xiàn),可用線性回歸模型擬合競拍人數(shù)(萬人)與月份編號之間的相關(guān)關(guān)系.請用最小二乘法求關(guān)于的線性回歸方程:,并預測月份參與競拍的人數(shù).

(2)某市場調(diào)研機構(gòu)從擬參加月份車牌競拍人員中,隨機抽取了人,對他們的擬報價價格進行了調(diào)查,得到如下頻數(shù)分布表和頻率分布直方圖:

報價區(qū)間(萬元)

頻數(shù)

(i)求、的值及這位競拍人員中報價大于萬元的概率;

(ii)若月份車牌配額數(shù)量為,假設競拍報價在各區(qū)間分布是均勻的,請你根據(jù)以上抽樣的數(shù)據(jù)信息,預測(需說明理由)競拍的最低成交價.

參考公式及數(shù)據(jù):①回歸方程,其中,

,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拋物線頂點在原點,焦點在x軸上,且過點(4,4),焦點為F

1)求拋物線的焦點坐標和標準方程;

2P是拋物線上一動點,MPF的中點,求M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點P12,3)、P2-4,5)和A-1,2),則過點A且與點P1P2距離相等的直線方程為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù)是自然對數(shù)的底數(shù))

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)在區(qū)間內(nèi)無零點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若fx)<2x在(1,+∞)上恒成立,求實數(shù)a的取值范圍;

2)若函數(shù)y=fx)在[m,n]上的值域是[m,n],求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四面體ABCD中作截面PQR,若PQCB的延長線交于點M,RQDB的延長線交于點NRPDC的延長線交于點K.

1)求證:直線平面PQR;

2)求證:點K在直線MN.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù),關(guān)于的不等式的解集為.

)求、的值;

)設.

i)若不等式上恒成立,求實數(shù)的取值范圍;

ii)若函數(shù)有三個不同的零點,求實數(shù)的取值范圍(為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高校為了對2018年錄取的大一理工科新生有針對性地進行教學,從大一理工科新生中隨機抽取40名,對他們2018年高考的數(shù)學分數(shù)進行分析,研究發(fā)現(xiàn)這40名新生的數(shù)學分數(shù)內(nèi),且其頻率滿足(其中,).

(1)求的值;

(2)請畫出這20名新生高考數(shù)學分數(shù)的頻率分布直方圖,并估計這40名新生的高考數(shù)學分數(shù)的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(3)將此樣本的頻率估計為總體的概率,隨機調(diào)查4名該校的大一理工科新生,記調(diào)查的4名大一理工科新生中“高考數(shù)學分數(shù)不低于130分”的人數(shù)為隨機變量,求的數(shù)學期望.

查看答案和解析>>

同步練習冊答案