【題目】為了緩解日益擁堵的交通狀況,不少城市實(shí)施車牌競(jìng)價(jià)策略,以控制車輛數(shù)量.某地車牌競(jìng)價(jià)的基本規(guī)則是:①“盲拍”,即所有參與競(jìng)拍的人都要網(wǎng)絡(luò)報(bào)價(jià)一次,每個(gè)人不知曉其他人的報(bào)價(jià),也不知道參與當(dāng)期競(jìng)拍的總?cè)藬?shù);②競(jìng)價(jià)時(shí)間截止后,系統(tǒng)根據(jù)當(dāng)期車牌配額,按照競(jìng)拍人的出價(jià)從高到低分配名額.某人擬參加月份的車牌競(jìng)拍,他為了預(yù)測(cè)最低成交價(jià),根據(jù)競(jìng)拍網(wǎng)站的數(shù)據(jù),統(tǒng)計(jì)了最近個(gè)月參與競(jìng)拍的人數(shù)(見(jiàn)下表):

月份

月份編號(hào)

競(jìng)拍人數(shù)(萬(wàn)人)

(1)由收集數(shù)據(jù)的散點(diǎn)圖發(fā)現(xiàn),可用線性回歸模型擬合競(jìng)拍人數(shù)(萬(wàn)人)與月份編號(hào)之間的相關(guān)關(guān)系.請(qǐng)用最小二乘法求關(guān)于的線性回歸方程:,并預(yù)測(cè)月份參與競(jìng)拍的人數(shù).

(2)某市場(chǎng)調(diào)研機(jī)構(gòu)從擬參加月份車牌競(jìng)拍人員中,隨機(jī)抽取了人,對(duì)他們的擬報(bào)價(jià)價(jià)格進(jìn)行了調(diào)查,得到如下頻數(shù)分布表和頻率分布直方圖:

報(bào)價(jià)區(qū)間(萬(wàn)元)

頻數(shù)

(i)求、的值及這位競(jìng)拍人員中報(bào)價(jià)大于萬(wàn)元的概率;

(ii)若月份車牌配額數(shù)量為,假設(shè)競(jìng)拍報(bào)價(jià)在各區(qū)間分布是均勻的,請(qǐng)你根據(jù)以上抽樣的數(shù)據(jù)信息,預(yù)測(cè)(需說(shuō)明理由)競(jìng)拍的最低成交價(jià).

參考公式及數(shù)據(jù):①回歸方程,其中,;

.

【答案】(1)2018年5月份參與競(jìng)拍的人數(shù)估計(jì)為2萬(wàn)人;(2)①

概率為最低成交價(jià)為萬(wàn)元..

【解析】分析:(1)先求均值 ,代入公式得 ,再根據(jù) ,最后根據(jù)線性回歸方程求預(yù)估值,(2) ①根據(jù)頻數(shù)等于總數(shù)與頻率的乘積得a,根據(jù)頻率分布直方圖中所有小長(zhǎng)方體面積和為1b,再根據(jù)頻率等于頻數(shù)除以總數(shù)得結(jié)果;先求報(bào)價(jià)在最低成交價(jià)以上人數(shù)占總?cè)藬?shù)比例,再對(duì)應(yīng)頻率分布直方圖頻率,確定結(jié)果.

詳解:(1)易知,,

,

關(guān)于的線性回歸方程為,

當(dāng)時(shí),,即2018年5月份參與競(jìng)拍的人數(shù)估計(jì)為2萬(wàn)人.

(2)(i)由解得

由頻率和為1,得,解得

位競(jìng)拍人員報(bào)價(jià)大于5萬(wàn)元得人數(shù)為人;

位競(jìng)拍人員中報(bào)價(jià)大于萬(wàn)元的概率為

(ii)2018年5月份實(shí)際發(fā)放車牌數(shù)量為3000,根據(jù)競(jìng)價(jià)規(guī)則,報(bào)價(jià)在最低成交價(jià)以上人數(shù)占總?cè)藬?shù)比例為;又由頻率分布直方圖知競(jìng)拍報(bào)價(jià)大于6萬(wàn)元的頻率為

所以,根據(jù)統(tǒng)計(jì)思想(樣本估計(jì)總體)可預(yù)測(cè)2018年5月份競(jìng)拍的最低成交價(jià)為萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若將判斷框內(nèi)“”改為關(guān)于的不等式“”且要求輸出的結(jié)果不變,則正整數(shù)的取值是

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各題中,哪些pq的充要條件?

1p:四邊形是正方形,q:四邊形的對(duì)角線互相垂直且平分;

2p:兩個(gè)三角形相似,q:兩個(gè)三角形三邊成比例;

3,;

4是一元二次方程的一個(gè)根,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的最大值和最小值,并求取得最大值和最小值時(shí)對(duì)應(yīng)的的值;

(2)設(shè)方程在區(qū)間內(nèi)有兩個(gè)相異的實(shí)數(shù)根的值;

(3)如果對(duì)于區(qū)間上的任意一個(gè)都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)2019年新年賀歲大片《流浪地球》自上映以來(lái)引發(fā)了社會(huì)的廣泛關(guān)注,受到了觀眾的普遍好評(píng).假設(shè)男性觀眾認(rèn)為《流浪地球》好看的概率為,女性觀眾認(rèn)為《流浪地球》好看的概率為.某機(jī)構(gòu)就《流浪地球》是否好看的問(wèn)題隨機(jī)采訪了4名觀眾(其中2男2女).

(1)求這4名觀眾中女性認(rèn)為好看的人數(shù)比男性認(rèn)為好看的人數(shù)多的概率;

(2)設(shè)表示這4名觀眾中認(rèn)為《流浪地球》好看的人數(shù),求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A{x|fx)=lgx1},集合B{y|y2x+a,x≤0}

1)若a,求AB;

2)若AB,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在古代三國(guó)時(shí)期吳國(guó)的數(shù)學(xué)家趙爽創(chuàng)制了一幅“趙爽弦圖”,由四個(gè)全等的直角三角形圍成一個(gè)大正方形,中間空出一個(gè)小正方形(如圖陰影部分)。若直角三角形中較小的銳角為a,F(xiàn)向大正方形區(qū)城內(nèi)隨機(jī)投擲一枚飛鏢,要使飛鏢落在小正方形內(nèi)的概率為,則_____________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

(1)若,討論的單調(diào)性;

(2)求正實(shí)數(shù)的值,使得的一個(gè)極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)產(chǎn)值在2008年~2017年的年增量(即當(dāng)年產(chǎn)值比前一年產(chǎn)值增加的量)統(tǒng)計(jì)圖如圖所示(單位:萬(wàn)元),下列說(shuō)法正確的是( )

A. 2009年產(chǎn)值比2008年產(chǎn)值少

B. 從2011年到2015年,產(chǎn)值年增量逐年減少

C. 產(chǎn)值年增量的增量最大的是2017年

D. 2016年的產(chǎn)值年增長(zhǎng)率可能比2012年的產(chǎn)值年增長(zhǎng)率低

查看答案和解析>>

同步練習(xí)冊(cè)答案