【題目】已知函數(shù).

1)若曲線在點(diǎn)處的切線方程為,求a的值;

2)若是函數(shù)的極值點(diǎn),且,求證:.

【答案】12)見解析

【解析】

1)求出切線方程,與對(duì)比系數(shù)即可;

2,令,通過討論知,且,從而,再由確定出的范圍即可獲證.

解:(1)由題意知,的定義域?yàn)?/span>,,

,

,

所以曲線在點(diǎn)處的切線方程為,

,

所以,解得.

2)由(1)得,,顯然.

,,

當(dāng)時(shí),,上單調(diào)遞增,無極值,不符合題意;

當(dāng)時(shí),,所以在上單調(diào)遞增

b滿足,則,,

所以.

,所以存在,使得,此時(shí).

又當(dāng)時(shí),,單調(diào)遞減,

當(dāng)時(shí),,,單調(diào)遞增,

所以為函數(shù)的極小值點(diǎn),且.

,則,所以上單調(diào)遞減,

,所以,∴

,則.

所以當(dāng)時(shí),單調(diào)遞增,所以,所以,

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面ABCD,底面ABCD為梯形,,且

1)在PD上是否存在一點(diǎn)F,使得平面PAB,若存在,找出F的位置,若不存在,請(qǐng)說明理由;

2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正三棱柱中,中點(diǎn),上的一點(diǎn),.

(1)若平面,求證:.

(2)平面將棱柱分割為兩個(gè)幾何體,記上面一個(gè)幾何體的體積為,下面一個(gè)幾何體的體積為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是拋物線的焦點(diǎn),是拋物線上一點(diǎn)過三點(diǎn)的圓的圓心為,點(diǎn)到拋物線的準(zhǔn)線的距離為.

1)求拋物線的方程;

2)若點(diǎn)的橫坐標(biāo)為4,過的直線與拋物線有兩個(gè)不同的交點(diǎn),直線與圓交于點(diǎn),且點(diǎn)的橫坐標(biāo)大于4,求當(dāng)取得最小值時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)已知的一個(gè)極值點(diǎn),求曲線處的切線方程

(Ⅱ)討論關(guān)于的方程根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為比較甲、乙兩名高中學(xué)生的數(shù)學(xué)素養(yǎng),對(duì)課程標(biāo)準(zhǔn)中規(guī)定的數(shù)學(xué)六大素養(yǎng)進(jìn)行指標(biāo)測(cè)驗(yàn)(指標(biāo)值滿分為100分,分值高者為優(yōu)),根據(jù)測(cè)驗(yàn)情況繪制了如圖所示的六大素養(yǎng)指標(biāo)雷達(dá)圖,則下面敘述不正確的是(

A.甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙B.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學(xué)建模素養(yǎng)

C.甲的六大素養(yǎng)整體水平優(yōu)于乙D.甲的六大素養(yǎng)中數(shù)學(xué)運(yùn)算最強(qiáng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)選修4-5:不等式選講

已知函數(shù)f(x)=log2(|x+1|+|x﹣2|﹣m).

(1)當(dāng)m=7時(shí),求函數(shù)f(x)的定義域;

(2)若關(guān)于x的不等式f(x)≥2的解集是R,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解該校高三年級(jí)學(xué)生數(shù)學(xué)科學(xué)習(xí)情況,對(duì)一?荚嚁(shù)學(xué)成績(jī)進(jìn)行分析,從中抽取了名學(xué)生的成績(jī)作為樣本進(jìn)行統(tǒng)計(jì),該校全體學(xué)生的成績(jī)均在,按照,,,,的分組作出頻率分布直方圖如圖(1)所示,樣本中分?jǐn)?shù)在內(nèi)的所有數(shù)據(jù)的莖葉圖如圖(2)所示.根據(jù)上級(jí)統(tǒng)計(jì)劃出預(yù)錄分?jǐn)?shù)線,有下列分?jǐn)?shù)與可能被錄取院校層次對(duì)照表為表(3).

分?jǐn)?shù)

可能被錄取院校層次

?

本科

重本

圖(3

1)求和頻率分布直方圖中的,的值;

2)根據(jù)樣本估計(jì)總體的思想,以事件發(fā)生的頻率作為概率,若在該校高三年級(jí)學(xué)生中任取3人,求至少有一人是可能錄取為重本層次院校的概率;

3)在選取的樣本中,從可能錄取為重本和?苾蓚(gè)層次的學(xué)生中隨機(jī)抽取3名學(xué)生進(jìn)行調(diào)研,用表示所抽取的3名學(xué)生中為重本的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線和直線,是直線上一點(diǎn),過點(diǎn)做拋物線的兩條切線,切點(diǎn)分別為,,是拋物線上異于,的任一點(diǎn),拋物線在處的切線與,分別交于,,則外接圓面積的最小值為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案